Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения.

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог - 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 - 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.


Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


Решение:

2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

Ответ: 15000.

Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

S = В +

Г
2
где В = 10, Г = 6, поэтому

S = 18 +

6
2
Ответ: 20.

Читайте также: ЕГЭ по физике: решение задач о колебаниях

Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.

Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

2 3 + x = 0,4 или 2 3 + х = 2 ,
5 3 + х 5 5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.

Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k 1 = 4.

2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

Ответ: –0,25.

Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

а 3 = 216

а = 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

< α < π.
4

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

< α < π,
4

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.

#ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

mv 2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α ∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:


Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a 16) · 8,

5 + a 16 = 560: 8,

5 + a 16 = 70,

a 16 = 70 – 5

a 16 = 65.

Ответ: 65.

Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


Искомая точка максимума x = –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


log 3 (2cosx ) = 2
2cosx = 9
cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
2 2
то cosx = √3
2

x = π + 2πk
6
x = – π + 2πk , k Z
6

б) Найдём корни, лежащие на отрезке .


Из рисунка видно, что заданному отрезку принадлежат корни

11π и 13π .
6 6
Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
6 6 6 6
Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

Ответ: (–1; –0.5] ∪ ∪ {3}.

Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)


1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x = 4 – 2x
2x (√3 + 1) 4
1 = 2 – x
√3 + 1 2

√3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

S DEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x ) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

x < 7718
310
x < 3859
155
x < 24 139
155

Наибольшее целое решение этого неравенства - число 24.

Ответ: 24.


Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a система неравенств

x 2 + y 2 ≤ 2ay a 2 + 1
y + a ≤ |x | – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

x 2 + (y a ) 2 ≤ 1
y ≤ |x | – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

Qr = 2a = √2, a = √2 .
2
Ответ: a = √2 .
2


Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

а) Укажите формулу п -го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n .

в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) a n = 4n – 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Во задании №2 ЕГЭ по математике необходимо продемонстрировать знания работы со степенными выражениями.

Теория к заданию №2

Правила обращения со степенями можно представить следующим образом:

Кроме этого, следует напомнить об операциях с дробями:

Теперь можно перейти к разбору типовых вариантов! 🙂

Разбор типовых вариантов заданий №2 ЕГЭ по математике базового уровня

Первый вариант задания

Найдите значение выражения

Алгоритм выполнения:
  1. Представить число с отрицательным показателем в виде правильной дроби.
  2. Выполнить первое умножение.
  3. Представить степени чисел в виде простых чисел, заменив степени их умножением.
  4. Выполнить умножение.
  5. Выполнить сложение.
Решение:

То есть: 10 -1 = 1/10 1 = 1/10

Выполним первое умножение, то есть умножение целого числа на правильную дробь. Для этого числитель дроби умножим на целое число, а знаменатель оставим без изменения.

9 · 1/10 = (9 · 1)/10 = 9/10

Первая степень числа всегда есть само число.

Вторая степень числа – это число умноженное само на себя.

10 2 = 10 · 10 = 100

Ответ: 560,9

Второй вариант задания

Найдите значение выражения

Алгоритм выполнения:
  1. Представить первую степень числа в виде целого числа.
  2. Представить отрицательные степени чисел в виде правильных дробей.
  3. Выполнить умножение целых чисел.
  4. Выполнить умножение целых чисел на правильные дроби.
  5. Выполнить сложение.
Решение:

Первая степень числа всегда есть само число. (10 1 = 10)

Чтобы представить отрицательную степень числа в виде обыкновенной дроби, необходимо 1 разделить на это число, но уже в положительной степени.

10 -1 = 1/10 1 = 1/10

10 -2 = 1/10 2 = 1/(10 · 10) = 1/100

Выполним умножение целых чисел.

3 · 10 1 = 3 · 10 = 30

Выполним умножение целых чисел на правильные дроби.

4 · 10 -2 = 4 · 1/100 = (4 ·1)/100 = 4/100

2 · 10 -1 = 2 · 1/10 = (2 · 1)/10 = 2/10

Вычислим значение выражения, учитывая, что

Ответ: 30,24

Третий вариант задания

Найдите значение выражения

Алгоритм выполнения:
  1. Представить степени чисел в виде умножения и вычислить значение степеней чисел.
  2. Выполнить умножение.
  3. Выполнить сложение.
Решение:

Представим степени чисел в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

2 4 = 2 · 2 · 2 · 2 = 16

2 3 = 2 · 2 · 2 = 8

Выполним умножение:

4 · 2 4 = 4 · 16 = 64

3 · 2 3 = 3 · 8 = 24

Вычислим значение выражения:

Четвертый вариант задания

Найдите значение выражения

Алгоритм выполнения:
  1. Выполнить действие в скобках.
  2. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

3 · 4 3 + 2 · 4 4 = 4 3 · (3 + 2 · 4)

Выполним действие в скобках.

(3 + 2 · 4) = (3 + 8) = 11

4 3 = 4 · 4 · 4 = 64

Вычислим значение выражения, учитывая, что

Пятый вариант задания

Найдите значение выражения

Алгоритм выполнения:
  1. Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.
  2. Вынести общий множитель за скобку.
  3. Выполнить действие в скобках.
  4. Представить степень числа в виде умножения и вычислить значение степени числа.
  5. Выполнить умножение.
Решение:

Представим степень числа таким образом, чтобы можно было вынести за скобку общий множитель.

Вынесем общий множитель за скобку

2 · 5 3 + 3 · 5 2 = 5 2 · (2 · 5 + 3)

Выполним действие в скобках.

(2 · 5 + 3) = (10 + 3) = 13

Представим степень числа в виде умножения. Для того чтобы представить степень числа в виде умножения, нужно это число умножить само на себя столько раз сколько содержится в показателе степени.

5 2 = 5 · 5 = 25

Вычислим значение выражения, учитывая, что

Выполняем умножение в столбик, имеем:

Вариант второго задания из ЕГЭ 2017 года (1)

Найдите значение выражения:

Решение:

В данном задании удобней привести значения к более привычному виду, а именно записать числа в числителе и знаменателе в стандартном виде:

После этого можно выполнить деление 24 на 6, в результате получим 4.

Десять в четвертой степени при делении на десять в третьей степени даст десять в первой, или просто десять, поэтому мы получим:

Вариант второго задания из ЕГЭ 2017 года (2)

Найдите значение выражения:

Решение:

В данном случае мы должны заметить, что число 6 в знаменателе раскладывается на множители 2 и 3 в степени 5:

После этого можно выполнить сокращения степеней у двойки: 6-5=1, у тройки: 8-5=3.

Теперь возводим 3 в куб и умножаем на 2, получая 54.

Вариант второго задания 2019 года (1)

Алгоритм выполнения
  1. Применяем к числителю св-во степеней (а х) у =а ху . Получаем 3 –6 .
  2. Применяем к дроби св-во степеней a x /a y =a x–y .
  3. Возводим 3 в полученную степень.
Решение:

(3 –3) 2 /3 –8 = 3 –6 /3 –8 = 3 –6–(–8)) = 3 –6+8 = 3 2 = 9

Вариант второго задания 2019 года (2)

Алгоритм выполнения
  1. Используем для степени в числителе (14 9) св-во (аb) х =a x ·b x . 14 разложим на произведение 2 и 7. Получим произведение степеней с основаниями 2 и 7.
  2. Преобразуем выражение в 2 дроби, каждая из которых будет содержать степени с одинаковыми основаниями.
  3. Применяем к дробям св-во степеней a x /a y =a x–y .
  4. Находим полученное произведение.
Решение:

14 9 / 2 7 ·7 8 = (2·7) 9 / 2 7 ·7 8 = 2 9 ·7 9 / 2 7 7 8 = 2 9–7 ·7 9–8 = 2 2 ·7 1 = 4·7 = 28

Вариант второго задания 2019 года (3)

Алгоритм выполнения
  1. Выносим за скобки общий множитель 5 2 =25.
  2. Выполняем в скобках умножение чисел 2 и 5. Получаем 10.
  3. Выполняем в скобках сложение 10 и 3. Получаем 13.
  4. Выполняем умножение общего множителя 25 и 13.
Решение:

2·5 3 +3·5 2 = 5 2 ·(2·5+3) = 25·(10+3) = 25·13 = 325

Вариант второго задания 2019 года (4)

Алгоритм выполнения
  1. Возводим в квадрат (–1). Получим 1, поскольку происходит возведение в четную степень.
  2. Возводим (–1) в 5-ю степень. Получим –1, т.к. происходит возведение в нечетную степень.
  3. Выполняем действия умножения.
  4. Получаем разность двух чисел. Находим ее.
Решение:

6·(–1) 2 +4·(–1) 5 = 6·1+4·(–1) = 6+(–4) = 6–4 = 2

Вариант второго задания 2019 года (5)

Алгоритм выполнения
  1. Преобразуем множители 10 3 и 10 2 в целые числа.
  2. Находим произведения путем переноса десят.запятой вправо на соответствующее число знаков.
  3. Находим результирующую сумму.

Лексические средства связи:

  1. Лексический повтор – повторение одного и того же слова. Вокруг города по низким холмам раскинулись леса, могучие, нетронутые. В лесах попадались большие луговины и глухие озёра с огромными старыми соснами по берегам.
  2. Однокоренные слова . Конечно, такой мастер знал себе цену, ощущал разницу между собой и не таким талантливым, но прекрасно знал и другую разницу - разницу между собой и более даровитым человеком. Уважение к более способному и опытному - первый признак талантливости.
  3. Синонимы . В лесу мы видели лося. Сохатый шёл вдоль опушки и никого не боялся.
  4. Антонимы . У природы много друзей. Недругов у неё значительно меньше.
  5. Описательные обороты . Построили шоссе. Шумная, стремительная река жизни соединила область со столицей.

Грамматические средства связи:

  1. Личные местоимения . 1) А я сейчас слушаю голос древнего ручья. Он воркует диким голубком. 2) Призыв об охране лесов должен быть обращён прежде всего к молодёжи. Ей жить и хозяйствовать на этой земле, ей и украшать её. 3) Он неожиданно вернулся в родное село. Его приезд обрадовал и испугал мать.
  2. Указательные местоимения (такой, тот, этот) 1) Над посёлком плыло тёмное небо с яркими, иглистыми звёздами. Такие звёзды бывают только осенью. 2) Далёким, милым дёрганьем кричали коростели. Эти коростели и закаты незабываемы; чистым видением сохранились они навсегда. – во втором тексте средства связи – лексический повтор и указательное местоимение «эти».
  3. Местоимённые наречия (там, так, тогда и др.) Он [Николай Ростов] знал, что этот рассказ содействовал к прославлению нашего оружия, и потому надо было делать вид, что не сомневаешься в нём. Так он и делал.
  4. Союзы (преимущественно сочинительные) Был май 1945 года. Гремела весна. Ликовали люди и земля. Москва салютовала героям. И радость огнями взлетала в небо. Всё с тем же говором и хохотом офицеры поспешно стали собираться; опять поставили самовар на грязной воде. Но Ростов, не дождавшись чаю, пошёл к эскадрону»
  5. Частицы .
  6. Вводные слова и конструкции (одним словом, итак, во-первых и др.) Молодые люди говорили обо всём русском с презрением или равнодушием и, шутя, предсказывали России участь Рейнской конфедерации. Словом, общество было довольно гадко.
  7. Единство видовременных форм глаголов - использование одинаковых форм грамматического времени, которые указывают на одновременность или последовательность ситуаций. Подражание французскому тону времён Людовика XV было в моде. Любовь к отечеству казалась педантством. Тогдашние умники превозносили Наполеона с фанатическим подобострастием и шутили над нашими неудачами. – все глаголы употреблены в форме прошедшего времени.
  8. Неполные предложения и эллипсис , отсылающие к предшествующим элементам текста: Хлеб режет Горкин, раздаёт ломти. Кладёт и мне: огромный, всё лицо закроешь.
  9. Синтаксический параллелизм – одинаковое построение нескольких рядом расположенных предложений. Уметь говорить – искусство. Уметь слушать – культура.
Вводное слово, союз, частица, наречие Когда используется?
ИНЫМИ СЛОВАМИ, ДРУГИМИ СЛОВАМИ Применяется тогда, когда автор текста хочет сказать то же самое, но понятнее.
КРОМЕ ТОГО Употребляется, когда необходимо дополнить сказанное некоторыми, по мнению автора, важными мыслями или обстоятельствами.
ТАКИМ ОБРАЗОМ, ИТАК, СЛЕДОВАТЕЛЬНО Используются, когда автор текста подводит итог своим рассуждениям.
НАПРИМЕР, ТАК Используются тогда, когда автор хочет пояснить то, о чём он говорил прежде.
НАОБОРОТ Используется тогда, когда автор текста противопоставляет одно предложение другому.
ВО-ПЕРВЫХ, С ОДНОЙ СТОРОНЫ Указывают на порядок изложения аргументов.
НЕСМОТРЯ НА ЭТО, ХОТЯ, ВОПРЕКИ ЭТОМУ Вносят в авторские рассуждения следующее значение: «вопреки тем обстоятельствам, которые указаны в предыдущей части текста».
ПОТОМУ ЧТО, ТАК КАК, ПОСКОЛЬКУ, ДЕЛО В ТОМ, ЧТО Автор использует тогда, когда указывает на причину описываемых явлений.
ПОЭТОМУ, ТАК ЧТО, ОТСЮДА Автор текста использует, когда хочет сделать вывод из своих рассуждений.
ТО ЕСТЬ Используется для уточнения сказанного ранее.
ОДНАКО, ЗАТО, НО Используются для противопоставления смысла одного предложения другому.
ИМЕННО, ВЕДЬ Вносят значение уточнения и подчёркивают важность мысли.
ДАЖЕ Вносят значение усиления.
НЕ СЛУЧАЙНО Имеет значение «по этой причине».
ОЗНАЧАЕТ Автор хочет привести пояснение к сказанному прежде в качестве образца, иллюстрации своей мысли.

Смысловые отношения, выражаемые сочинительными союзами:

  1. Соединительные: и, да(=и), и…и…, не только… но и, как… так и, также, тоже
  2. Разделительные: или, либо, то…то, не то… не то, или… или, то ли… то ли
  3. Противительные: а, но, да (=но), однако, зато
  4. Градационные: не только, но и, не столько… сколько, не то чтобы… а
  5. Пояснительные: то есть, а именно
  6. Присоединительные: также, тоже, да и, и притом, причём
  7. тоже, да и, то есть, а именно.

Смысловые отношения, выражаемые подчинительными союзами:

  • Временные: когда, пока, едва, лишь, в то время как, лишь только, чуть, чуть лишь
  • Причинные: так как, потому что, оттого что, ввиду того что, благодаря тому что, вследствие того что, ибо (устар.), в связи с тем что
  • Условные: если (кабы, коли, ежели – устар.), если бы, раз, как скоро
  • Целевые: чтобы, для того чтобы, дабы (устар.), с той целью чтобы, с тем чтобы, затем чтобы
  • Следствия: так что
  • Уступительные: хотя, несмотря на то что
  • Сравнительные: как, словно, будто, точно, чем, как будто, подобно тому как, нежели (устар.)
  • Изъяснительные: что, как, чтобы
  • В начале предложения не употребляются союзы: так что, чем, нежели, а также изъяснительные союзы: что, как, чтобы.

Оценивание


двух частей , включающих в себя 19 заданий . Часть 1 Часть 2

3 часа 55 минут (235 минут).

Ответы

Но можно сделать циркуль Калькуляторы на экзамене не используются .

паспорт ), пропуск и капиллярную или ! Разрешают брать с собой воду (в прозрачной бутылке) и еду


Экзаменационная работа состоит из двух частей , включающих в себя 19 заданий . Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 cодержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий высокого уровня сложности с развёрнутым ответом.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби . Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться , выдаваемыми вместе с работой. Разрешается использовать только линейку , но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются .

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт ), пропуск и капиллярную или гелевую ручку с черными чернилами ! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.