Импульс тела. Реактивное движение


Занятие № 14

Тема. Импульс тела. Закон сохранения импульса. Реактивное движение.

Цель: cформировать знания учащихся о физических величи­нах - импульсе тела и импульсе силы, и связи между ними; помочь осознать закон сохранения импульса; cформировать знания о реактивном движении.

Тип урока: урок усвоения новых знаний.

Оборудование: стальной шарик, магнит, стакан с водой, лист бумаги, одинаковые шары (2 или 4) на нитях, воздушный шарик, поддон, детская машинка, стакан с водой и краном.

^ План-схема урока


Этапы урока

Время, мин

Методы и формы работы с классом

I. Организационный этап

2

II. Актуализация опорных знаний

5

Фронтальный опрос

III. Сообщение темы, цели и задач урока

2

Определение цели урока по плану изучения темы

IV. Мотивация учебной деятельности

2

Аргументированное объяснение

V. Восприятие и первоначальное осмысление нового мате­риала

20

Объяснение учителя с элементами эвристиче­ской беседы

VI. Закрепление нового мате­риала

10

Тест для самопроверки

VII. Подведение итогов урока и сообщение домашнего за­дания

4

Объяснение учителя, инструктаж

^ Ход урока

  1. Организационный этап

  2. Актуализация и коррекция опорных знаний
Учитель подчеркивает, что те понятия и физические величи­ны, с которыми учащиеся ознакомятся на уроке, для них новы. Чтобы создать определенную основу для изучения темы, следует предложить учащимся повторить предыдущий материал.

Вопросы классу


  1. Сформулируйте первый закон динамики Ньютона.

  2. Сформулируйте второй закон динамики Ньютона.

  3. Сформулируйте третий закон динамики Ньютона.

  4. Какая система тел называется изолированной или замкнутой?

  1. Сообщение темы, цели и задач урока
Учитель сообщает тему урока, предлагает учащимся ознако­миться с планом ее изучения, записанным на доске. Затем про­сит учащихся самостоятельно сформулировать цель урока и при необходимости вносит коррективы в их ответы.

План изучения темы


    1. Импульс силы.

    2. Импульс тела.

    3. Изолированная система тел. Закон сохранения импульса.

    4. Реактивное движение. Движение ракеты как реактивное движение.

  1. Мотивация учебной деятельности
Законы Ньютона в принципе позволяют решить все задачи, связанные с взаимодействием тел. Но найти силы взаимодей­ствия часто достаточно сложно, а без этого невозможно найти ускорение, приобретаемое телом, и соответственно его скорость и перемещение. Для решения подобных задач в механике вве­дены специальные понятия и величины, при их помощи уста­новлено соотношение между ними. При этом оказалось, что чис­ловые значения введенных величин не изменяются в процессе взаимодействия тел, поэтому самые важные соотношения между величинами, которые сохраняются, получили название законов сохранения. Закон сохранения энергии в разных интерпретациях уже рассматривался ранее. Сейчас пришел черед ознакомиться с законом сохранения импульса.

Как и законы Ньютона, законы сохранения являются результатом теоретического обобщения исследовательских фактов. Это - фундаментальные законы физики, которые имеют исключительно важное значение, поскольку применяются не только в механике, но и в других разделах физики.


  1. Восприятие и первоначальное осмысление нового материала
1. Импульс силы

Под термином «импульс» (от лат. « impulsus » - толчок) в ме­ханике понимают импульс силы и импульс тела.

Вопрос классу. Как вы считаете, зависит ли результат взаи­модействия от времени или он определяется только силой взаимодействия?

Демонстрация 1. На горизонтальную поверхность положить стальной шарик и быстро пронести над ним магнит. Шарик едва сдвинется с места (рис. 1, а). Повторить опыт, пронося магнит медленно. Шарик будет двигаться за магнитом (рис. 1, б).

Демонстрация 2. На край стола положить лист бумаги и поставить на него стакан с водой. Если лист тянуть медленно, то стакан движется вместе с ним (рис. 2, а), а если лист дер­нуть, он выдернется из-под стакана, а ста­кан останется на месте (рис. 2, б).

^ Вопрос классу. О чем свидетельствуют эти опыты?

Взаимодействие тел зависит не только от силы, но и от времени ее действия, поэтому для характеристики действия силы ввели специальную характеристику - импульс силы.

^ Импульс силы - физическая величина, являющаяся мерой действия силы за определенный интервал времени и численно равная произведению силы на время е ё действия:
.

Единицей в СИ является ньютон-секунда (Н ∙ с). Импульс силы - векторная величина: направление импульса силы совпа­дает с направлением силы, действующей на тело.

^ 2. Импульс тела

Представим себе, что шар массой 40 г бросили со скоростью 5 м/с. Такой шар можно остановить, подставив лист плотного картона или толстую ткань. Но если шар выстрелить из винтов­ки со скоростью 800 м/с, то даже с помощью тр ё х толстых досок остановить его почти невозможно.

^ Вопрос классу. Какой вывод можно сделать из этого примера?

Для характеристики движения недостаточно знать только массу тела и скорость. Поэтому как одна из мер механического движения введен импульс тела (или количество движения).

^ Импульс тела - физическая величина, которая является ме­рой механического движения и численно определяется произве­дением массы тела на скорость его движения:
.

Единицей в СИ является килограмм-метр в секунду (кг ∙м/с) . Импульс тела - векторная величина, его направление совпадает с направлением скорости движения тела.

Если тело массой m движется со скоростью υ, а потом в течение времени взаимодействует с другим телом с силой F , то в процессе этого взаимодействия тело будет двигаться с ускоре­нием а:

,
.

Последняя формула демонстрирует связь между импульсом силы и изменением импульса тела.

Таким образом, изменение импульса тела равно импульсу силы взаимодействия.

^ 3. Изолированная система тел. Закон сохранения импульса

Изолированная (или замкнутая) система тел - это система тел, взаимодействующих только между собой и не взаимодействующих с телами, не входящими в эту систему.

Изолированных систем тел в полном смысле этого слова не существует, это идеализация. Все тела в мире взаимодействуют. Но в ряде случаев реальные системы можно рассматривать как изолированные, исключая из рассмотрения те взаимодействия, которые в данном случае являются несущественными.

Демонстрация 3. Упругий удар двух шаров одинаковой массы, подвешенных на нитях (рис. 3).

Так, изучая упругий удар двух одинаковых шаров, систему.шаров можно рассматривать как изолированную, так как в момент удара силы тяжести шаров уравновешены силами реакции нитей, силы сопротивления.воздуха шаров малы, ими можно пренебречь.

Приведите примеры других систем, которые можно считать изолированными.

Если снова обратиться к системе шаров массами т 1 и т 2 , которые в начальный момент времени в выбранной инерциальной системе отсчета имеют скорости и , то через момент времени t можно увидеть, что их скорости в результате взаимодействия изменились до и .

Согласно второму закону Ньютона:

Поскольку согласно третьему закону Ньютона

Из полученного выражения видно, что векторная сумма импульсов тел, входящих в замкнутую систему, остается постоянной. Это и есть закон сохранения импульса.

^ 4. Реактивное движение. Движение ракеты как реактивное движение

Законом сохранения импульса объясняется реактивное движение.

^ Реактивное движение - это движение тела, возникающее в результате отделения от него части или выброса им вещества с некоторой скоростью относительно тела.

Демонстрация 4 . Надуть воздушный шарик, а затем отпустить. Шарик будет двигаться за счет газов, которые из него «вытекают».

Демонстрация 5. В поддон поставить детскую машинку и установить на нее стакан с водой, имеющий кран. Если открыть кран, из стакана начнет вытекать вода, и машинка поедет.

^ Задание классу. Приведите примеры реактивного движения. (Реактивное движение осуществляют самолеты, летящие со скоростями в несколько тысяч километров в час, снаряды всем известных «катюш», космические ракеты. Реактивное движение присуще, например, кальмарам, каракатицам, осьминогам.)

Рассмотрим рис. 4. Любая ракета состоит из трубчатого корпуса 1, закрытого с одного конца. На втором конце расположено сопло 2. Каждая ракета имеет топливо 3. Когда ракета стоит, ее суммарный импульс равен нулю: топливо и корпус неподвижны. Будем считать, что топливо ракеты сгорает мгновенно. Ра с каленные газы 4 под большим давлением вырываются наружу.

При этом корпус ракеты движется в сторону, противоположную движению раскаленных газов.

Пусть m г υ г - проекция импульса газов на ось Оу, а m к υ к - проекция импульса корпуса ракеты. Согласно закону сохранения импульса сумма импульсов корпуса ракеты и вытекающих газов равна суммарному импульсу ракеты на старте, который, как известно, равен нулю. Соответственно 0 = m r υ r + m к υ к

m к υ к = - m г υ г

Отсюда следует, что корпус ракеты получает такой же по модулю импульс, как и газы, вылетевшие из сопла. Следовательно,

Здесь знак «-» указывает на то, что направление скорости корпуса ракеты противоположно направлению скорости вылетающих газов. Поэтому для перемещения ракеты в заданном направлении струю газов, выбрасываемых ракетой, надо направить противоположно заданному направлению движения. Как видим, ракета движется, не взаимодействуя с другими телами, и поэтому может двигаться в космосе.

^ Задание классу. Проанализировав последнюю формулу, ответьте на вопрос: как можно увеличить скорость ракеты?

Скорость ракеты можно увеличить двумя способами:


  1. увеличить скорость газов, вытекающих из сопла ракеты;

  2. увеличить массу сгорающего топлива.
Второй способ приводит к уменьшению полезной массы ракеты - массы корпуса и массы грузов, ею перевозимых.

VI. Закрепление нового материала

^ Тест для самопроверки

Отметьте правильный, по вашему мнению, ответ.


    1. Импульсом тела называется:
^ А произведение массы тела и его ускорения

Б произведение массы тела и его скорости

В произведение силы, действующей на тело, и скорости тела

Г произведение силы, действующей на тело, и времени ее действия


    1. Укажите единицу импульса тела.

  1. Укажите единицу импульса силы.

  1. Изменение импульса тела равно:
А произведению массы тела и его скорости

Б разности начальной и конечной скорости тела

В импульсу силы

Г изменению массы тела за единицу времени


  1. Реактивное движение возникает:
^ А при отталкивании тел

Б движении различных частей тела относительно центра массы тела

^ В разделении тела на части

Г отделении от тела части его массы с определенной скоростью движения относительно остальной части


  1. Определите, в каких системах отсчета выполняется закон сохранения импульса.
А Инерциальных В Замкнутых

Б Неинерциальных Г Любых


  1. Выберите пример, демонстрирующий реактивное движение.
^ А Движение кальмара

Б Колебание маятника

В Полет мотылька

Г Падение листьев с деревьев


  1. Ракета поднимается равномерно вертикально вверх. Определите, как и почему изменяется импульс ракеты.
А Уменьшается, поскольку уменьшается масса ракеты

Б Не изменяется, поскольку масса уменьшается, а скорость движения увеличивается

В Возрастает, поскольку ракета поднимается все выше над землей

Г Не изменяется, поскольку скорость движения постоянная


  1. Укажите правильную запись закона сохранения импульса.


1

2

3

4

5

6

7

8

9

Б

В

Г

В

Г

В

А

А

А

VII. Подведение итогов урока и сообщение домашнего задания

Учитель подводит итоги урока, оценивает деятельность учащихся.

Домашнее задание


  1. Выучить теоретический материал по учебнику.

  2. Охарактеризовать реактивное движение как физическое явление по обобщенному плану хар актеристики физического явления.

  3. Продумать демонстрацию реактивного движения, описать и объяснить ее.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса . Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона

Если эти тела взаимодействуют в течение времени t , то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:

Применим к этим телам второй закон Ньютона:

Где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует, что в результате взаимодействия двух тел их суммарный импульс не изменился:

Закон сохранения импульса:

Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Рис. 1.17.1 иллюстрирует закон сохранения импульса на примере нецентрального соударения двух шаров разных масс, один из которых до соударения находился в состоянии покоя.

Изображенные на рис. 1.17.1 вектора импульсов шаров до и после соударения можно спроектировать на координатные оси OX и OY . Закон сохранения импульса выполняется и для проекций векторов на каждую ось. В частности, из диаграммы импульсов (рис. 1.17.1) следует, что проекции векторов и импульсов обоих шаров после соударения на ось OY должны быть одинаковы по модулю и иметь разные знаки, чтобы их сумма равнялась нулю.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение .

При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс (рис. 1.17.2). Если скорости орудия и снаряда обозначить через и а их массы через M и m , то на основании закона сохранения импульса можно записать в проекциях на ось OX

На принципе отдачи основано реактивное движение . В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m , а массу ракеты после истечения газов через M . Тогда для замкнутой системы «ракета + газы» на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия) можно записать:

где V – скорость ракеты после истечения газов. В данном случае предполагается, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно . На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью (рис. 1.17.3 (1)). В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM , где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна –ΔM > 0. Скорость газов в инерциальной системе OX будет равна Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен , а импульс испущенных газов равен . В момент времени t импульс всей системы был равен Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ΔM | << M . Разделив обе части последнего соотношения на Δt и перейдя к пределу при Δt →0, получаем:

Рисунок 1.17.3.

Ракета, движущаяся в свободном пространстве (без гравитации). 1 – в момент времени t . Масса ракеты М, ее скорость

2 – Ракета в момент времени t + Δt . Масса ракеты M + ΔM , где ΔM < 0, ее скорость масса выброшенных газов –ΔM > 0, относительная скорость газов скорость газов в инерциальной системе

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение
выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу Циолковского для конечной скорости υ ракеты:

где – отношение начальной и конечной масс ракеты.

Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть равно 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет , когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Закон сохранения импульса

В подразделе (5.8) было введено понятие импульса произвольного тела и получено уравнение (5.19), описывающее изменение импульса под действием внешних сил. Так как изменение импульса обусловлено только внешними силами, то уравнение (5.19) удобно применять для описания взаимодействий нескольких тел. При этом взаимодействующие тела рассматривают как одно сложное тело (систему тел). Можно показать, что импульс сложного тела (системы тел) равен векторной сумме импульсов его частей:

p = p 1 +p 2 +…(9.13)

Для системы тел уравнение вида (5.13) записывается без всяких изменений:

dp = F·dt. (9.14)

Изменение импульса системы тел равно импульсу действующих на нее внешних сил.

Рассмотрим некоторые примеры, иллюстрирующие действие этого закона.

На рис. 9.10, а спортсменка стоит, опираясь правой ногой на скейтборд, а левой отталкивается от земли. Достигнутая при толчке скорость зависит от силы толчка и от времени, в течение которого эта сила действует.

На рис. 9.10, б изображен метатель копья. Скорость, которую приобретет копье данной массы, зависит от силы, приложенной рукой спортсмена и от времени, в течение которого она приложена.

Рис. 9.10. а) Спортсменка на скейтборде; б) метатель копья

Рис. 9.11.

Толкание ядра

Поэтому перед броском копья спортсмен заносит руку далеко назад. Более детально подобный процесс разобран ни примере спортсмена, толкающего ядро, рис. 9.11.

Из равенства (9.14) вытекает одно важное для практического применения следствие, называемое законом сохранения импульса. Рассмотрим систему тел, на которую не действуют внешние силы. Такую систему называют замкнутой.

Система тел, которые взаимодействуют только между собой и не взаимодействуют с другими телами, называется замкнутой.

Для такой системы внешних сил нет (F = 0 и dp = 0). Поэтому имеет место закон сохранения импульса.

Векторная сумма импульсов тел, входящих в замкнутую систему, остается неизменной (сохраняется).

Иными словами, для любых двух моментов времени импульсы замкнутой системы одинаковы:



p 1 =p 2 (9.15)

Закон сохранения импульса - это фундаментальный закон природы, не знающий никаких исключений. Он абсолютно точно соблюдается и в макромире и в микромире.

Конечно, замкнутая система - это абстракция, так как практически во всех случаях внешние силы есть. Однако для некоторых типов взаимодействий с очень малой длительностью наличием внешних сил можно пренебречь, так как при малом интервале действия импульс силы можно считать равным нулю:

F·dt 0→dp 0.

К процессам малой длительности относятся

Соударения движущихся тел

Распад тела на части (взрыв, выстрел, бросок).

Примеры

В боевиках часто присутствуют сцены, в которых после попадания пули человека отбрасывает по ходу выстрела. На экране это выглядит довольно эффектно. Проверим, возможно ли это? Пусть масса человек М =70 кг и он в момент попадания пули находится в состоянии покоя. Массу пули примем равной т = 9 г, а ее скорость v = 750 м/с. Если считать, что после попадания пули человек приходит в движение (в действительности этому может помешать сила трения между подошвами и полом), то для системы человек- пуля можно записать закон сохранения импульса: р 1 = р 2. Перед попаданием пули человек не движется и в соответствии с (9.9) импульс системы р 1 = m∙v +0. Будем считать, что пуля застревает в теле. Тогда конечный импульс системы р 2 = (М + т)∙и, где и - скорость, которую получил человек при попадании пули. Подставив эти выражения в закон сохранения импульса, получим:

Полученный результат показывает, что ни о каком отлетании человека на несколько метров не может быть и речи (кстати, тело, брошенное вверх со скоростью 0,1 м/с, поднимется на высоту всего 0,5 мм!).

2) Столкновение хоккеистов.

Два хоккеиста массой М 1 и М 2 двигаются навстречу друг другу со скоростями, соответственно, v 1, v 2 (рис. 9.12). Определить общую скорость их движения, считая столкновение абсолютно неупругим (при абсолютно неупругом ударе тела «сцепляются» и двигаются далее как одно целое).

Рис. 9.12. Абсолютно неупругое столкновение хоккеистов

Применим закон сохранения импульса к системе, состоящей из двух хоккеистов. Импульс системы перед столкновением p 1 =M 1 ∙v 1 - M 2 v 2. В этой формуле стоит знак «-» потому, что скорости v 1 и v 2 направлены навстречу друг другу. Направление скорости v 1 считается положительным, а направление скорости v 2 - отрицательным. После неупругого столкновения тела движутся с общей скоростью v и импульс системы р 2 = (M l + M 2)∙v. Запишем закон сохранения импульса и найдем скорость v:

Направление скорости v определяется ее знаком.

Обратим внимание на одно важное обстоятельство: закон сохранения импульса можно применять только к свободным телам. Если движение одного из тел ограничено внешними связями, то общий импульс сохраняться не будет.

Реактивное движение

На использовании закона сохранения импульса основано реактивное движение. Так называют движение тела, возникающее при отделении от тела с какой-то скоростью некоторой его части. Рассмотрим реактивное движение ракеты. Пусть ракета и ее масса вместе с топливом М покоится. Первоначальный импульс ракеты с топливом равен нулю. При сгорании порции топлива массы т образуются газы, которые выбрасываются через сопло со скоростью и. По закону сохранения импульса общий импульс ракеты и топлива сохраняется: р 2 = p 1 т∙и +(М - m)∙v = 0, где v - скорость, полученная ракетой. Из этого уравнения находим: v = ─т∙и /(М ─ т). Мы видим, что ракета приобретает скорость, направленную в сторону противоположную направлению выброса газа. По мере сгорания топлива скорость ракеты непрерывно возрастает.

Примером реактивного движения является и отдача при выстреле из винтовки. Пусть винтовка, масса которой m 1 = 4,5 кг, стреляет пулей массой т 2 = 11 г, вылетающей со скоростью v 1 = 800 м/с. Из закона сохранения импульса можно высчитать скорость отдачи:

Такая значительная скорость отдачи возникнет, если винтовка не прижата к плечу. В этом случае стрелок получит сильный удар прикладом. При правильной технике выстрела стрелок прижимает винтовку к плечу и отдачу воспринимает все тело стрелка. При массе стрелка 70 кг скорость отдачи в этом случае будет равна 11,8 см/с, что вполне допустимо.

ИМПУЛЬСОМ ТЕЛА НАЗЫВАЕТСЯ векторная величина, равная ПРОИЗВЕДЕНИЕ МАССЫ ТЕЛА НА ЕГО СКОРОСТЬ:

За единицу импульса в системе СИ принят импульс тела массой 1 кг, двигающегося со скоростью 1 м/с. Называется эта единица КИЛОГРАММ-МЕТР В СЕКУНДУ(кг . м/с).

СИСТЕМА ТЕЛ, НЕ ВЗАИМОДЕЙСТВУЮЩИХ С ДРУГИМИ ТЕЛАМИ, НЕ ВХОДЯЩИМИ В ЭТУ СИСТЕМУ, НАЗЫВАЕТСЯ ЗАМКНУТОЙ.

В замкнутой системе тел для импульса выполняется закон сохранения.

В ЗАМКНУТОЙ СИСТЕМЕ ТЕЛ ГЕОМЕТРИЧЕСКАЯ СУММА ИМПУЛЬ­СОВ ТЕЛ ОСТАЕТСЯ ПОСТОЯННОЙ ПРИ ЛЮБЫХ ВЗАИМОДЕЙСТВИЯХ ТЕЛ ЭТОЙ СИСТЕМЫ МЕЖДУ СОБОЙ.

На законе сохранения импульса основано реактивное движение. При сгорании топлива, газы, нагретые до большой температуры, выбрасываются из сопла ракеты с некоторой скоростью. При этом они взаимодействуют с ракетой. Если до начала работы двигателя сумма импульсов

V
v
ракеты и топлива была равна нулю, после выброса газов, она должна остаться такой же:

где M - масса ракеты; V - скорость ракеты;

m - масса выброшенных газов; v - скорость истечения газов.

Отсюда получим выражение для скорости ракеты:

Главная особенность реактивного двигателя в том, что для движения ему не нужна среда с которой он может взаимодействовать. Поэтому ракета - единственное транс­портное средство, способное перемещаться в безвоздушном пространстве.

Доказал возможность использования ракет для исследования космического пространства великий русский ученый и изобретатель Константин Эдуардович Циолковский. Он разработал схему устройства ракеты, нашел необходимые компоненты топлива. Работы Циолковского послужили базой для создания первых космических кораблей.

Первый в мире искусственный спутник Земли был запущен в нашей стране 4 октября 1957 года, а 12 апреля 1961 года Юрий Алексеевич Гагарин стал первым космонавтом Земли. В настоящее время космические аппараты исследуют другие планеты Солнечной системы, кометы, астероиды. Американские астронавты высажива­лись на Луне, готовится пилотируемый полет на Марс. На орбите в течении длительного времени работают научные экспедиции. Разработаны космические корабли многора­зового использования "Шатл" и "Челенджер" (США) , "Буран" (Россия), ведутся работы по созданию на орбите Земли научной станции "Альфа", где будут вместе работать ученые разных стран.

Реактивное движение используют и некоторые живые организмы. Например, кальмары и осьминоги движутся, выбрасывая струю воды в противоположную движению сторону.

4/2. Экспериментальное задание по теме «Молекулярная физика»: наблю­дение изменения давления воздуха при изменении температуры и объема.

Подключить гофрированный цилиндр к манометру, измерить давление внутри цилиндра.

Поместить цилиндр в сосуд с горячей водой. Что происходит?

Сжать цилиндр. Что происходит?