Химический эксперимент в современной школе план лекции. Доклад «Химический эксперимент, как одна из активных форм обучения на уроках химии Учебный химический эксперимент

Место химического эксперимента в современном уроке. Муниципальное общеобразовательное учреждение Лицей №15 Заводского района г. Саратова Сафарова М.А. “Красивый эксперимент сам по себе часто гораздо ценнее, чем двадцать формул, добытых в реторте отвлеченной мысли” А.Эйнштейн Современная тенденция гуманизации образования предполагает развитие личностной природы индивидуума, инсталляцию образовательного материала в соответствии с интересами и потребностями ученика, создание условий для самоопределения, самореализации личности ребенка, снабжения его разума не готовыми знаниями и фактами, а инструментами для обучения. Ведущим фактором такой формы обучения становится проблемно­поисковая, проектно­исследовательская ориентация. Успешность сегодняшних образовательных технологий определяется системой совместных целенаправленных действий обучающего и обучаемого для достижения запланированных результатов обучения, воспитания и образования. Если говорить о месте эксперимента в современном школьном естественнонаучном образовании, то, несомненно, стоит отметить его недостаточное использование вследствие некоторых причин: сокращение часов предмета химии, ограничении используемых реактивов и материалов. Однако и экспериментальных данных на всех этапов урока и внеклассного мероприятия служит инструментом активизации познавательной активности обучающихся, развитию исследовательских умений, аналитических и рефлексивных возможностей, социализации и адаптации индивидуума в социуме. Считается, что в данном случае задействована эмоциональная память обучающегося, что позволяет улучшить запоминание и понимание знания, а также соединить воедино теоретический и практический аспект науки. использование эффективное эксперимента Использование эксперимента возможно в виде нескольких форм организации, как иллюстрационный (демонстрационный) эксперимент, лабораторные опыты и работы, практические работы и опыты, внеклассный (исследовательский) и домашний эксперимент. Для эффективной реализации экспериментальной составляющей урока необходима детальная проработка всех этапов эксперимента. Преподавателю необходимо учитывать наглядность данного эксперимента, его безопасность для учителя и учеников (необходимо

соблюдать все меры предосторожности), целесообразность применения для освещения конкретной проблемы. Полученные данные и результаты исследования должны быть трактованы, снабжены логичными и верными комментариями и выводами. Если рассмотреть структуру урока, то экспериментальной составляющей на любой фазе урока найдется соответствующая ниша. Так, на этапе инициации, при сообщении целей урока и планирования его результатов использование проблемного эксперимента с нестандартным содержанием или неожиданным результатом способно побудить учеников включиться в активно­познавательную деятельность на уроке, заинтересовать обучающихся. Как правило, такой демонстрационный эксперимент может быть проведен учителем либо специально подготовленным обучающимся, незаменимо так же использование материалов виртуальной лаборатории, моделированных на компьютере процессов. В процессе актуализации материала на уроке, включающей интеракции всех участников образовательного процесса, демонстрационно­исследовательский эксперимент и лабораторные опыты и работы позволяют визуализировать химические процессы и реакции, закрепить полученные знания и навыки, получить подтверждение гипотезе, сформированной учеником при просмотре проблемного эксперимента в начале урока (или опровергнуть ее). В данном случае преподаватель предлагает учащимся провести несложные опыты по определенному алгоритму, наверняка приводящим к искомому результату. Немаловажно, когда учитель призывает ребят к дискуссии, комментируя и резюмируя выводы обучающихся, а у ребенка складывается четкая позиция правильности и последовательности полученных результатов. Мировоззренческая и образовательная функция проблемного и исследовательского эксперимента позволяет обучающимся формировать и корректировать собственные представления о различных процессах и явлениях, связывать лабораторный опыт и бытовое или промышленное явление, использовать полученные навыки на следующих этапах изучения и для объяснения похожих явлений и процессов. На этапе закрепления материала возможно включение эксперимента в виде практической работы, а возможно использование задач и заданий, основанных на полученных ранее экспериментальных данных или составление их для ситуаций, требующих практического решения (метод кейсов). В данном случае можно говорить о реализации компетентностного подхода в обучении, межпредметных связях и

применении знаний и умений обучающихся в конкретных жизненных ситуациях. Так, определение хлоридов с применением нитрата серебра можно испробовать не только на лабораторном растворе, но и на обычной водопроводной и минеральной воде, определение молочной кислоты с помощью соли железа можно провести для сравнения в смыве с кожи и т.д. Обучающимся можно предложить составить алгоритм решения подобного задания для другого набора реактивов, другого набора объектов и условий. Как правило, такие задания заставляют обучающихся применить полученные знания на решении здоровьесберегающих, экологических и производственно­бытовых проблем. Следующий этап урока – рефлексия полученных знаний и навыков, критический анализ полученной информации и собственных достижений на этапах урока. На этом этапе ученик осмысляет ход и результаты всего занятия, информация, полученная на уроке из различных источников, формирует устойчивые и отчетливые образы новых умений и навыков. Все использованные факты и данные необходимо четко связать с полученными результатами, все проблемные и исследовательские вопросы урока должны быть решены. В настоящее время широко реализуется практика внедрения домашнего эксперимента, что несомненно служит не только расширению и углублению знаний и навыков обучающихся, способствует удовлетворению исследовательских и познавательных интересов учеников, но и способствует развитию творческой деятельности, осуществление связи наука­жизнь. Особую ценность несет научно­проблемный, проектно­ исследовательский эксперимент. Как правило, его осуществление возможно за рамками урока на внеурочных или кружковых занятиях. Такая деятельность может включать три различных степени свободы: 1) реализация исследовательской работы индивидуально или в малой группе по уже известной схеме, но с непредсказуемым результатом. Обобщение результатов такого экспериментального задания происходит, как правило, в форме дискуссии или диалога. Так, качественное определение хлорид­ и нитрат­ионов можно провести в пробах природных и минеральных вод, вытяжках из мякоти овощей и фруктов. 2) реализация обучающимися исследовательской работы по изучению конкретного объекта с помощью выбранных ими в сотворчестве с учителем методами и методиками. В качестве примера

можно предложить выделение и исследование поведения природных индикаторах в растворах различной кислотности; синтез органических и неорганических веществ; количественное и качественное определение различных компонентов в природных объектах. 3) в данном случае обучающийся сам формирует проблему, выбирает цели и пути проведения исследования. Роль учителя заключается в компетентном направлении и консультировании обучающегося. Ученик со всех сторон анализирует возможный объект исследования, рассматривая возможные методы, проводит возможный эксперимент и обрабатывает полученные результаты исследования, предоставляя конкретный результат на обсуждение, защищает собственную позицию, руководствуясь полученными знаниями и навыками. Должное внимание химическому эксперименту на уроках и во внеурочной деятельности позволяет: стимулировать интерес обучающихся к предмету, увеличить мотивацию, успешность в освоении науки; отработать навыки и способы безопасной работы с реактивами и оборудованием; выработать у ребят потребность в получении и успешной обработки результатов исследования; показать уникальность и взаимосвязь процессов и явлений в природе, быту, теле человека; сделать упор на здоровьесберегающие и экологические проблемы; повысить интеллектуальный уровень учеников, укрепить позицию личности в социуме. Литература. 1. Тяглова Е.В. Исследовательская деятельность учащихся по химии: метод.пособие.­ М.: Глобус, 2007.­ 224с 2. И.В.Ширшина Химия. Проектная деятельность обучающихся.­ Волгоград: Учитель, 2006. – 184 с. 3. И.В.Маркина Современный урок химии.­ Ярославль: Академия развития.­ 2008.­ 288с. 4. Еременко Е.Б. Ведение домашнего эксперимента в процессе обучения химии семиклассников // Фестиваль творческих идей «Открытый урок», http://festival.1september.ru/articles/565314/ 5. О.С. Габриелян, Л. П. Ватлина «Химический эксперимент в школе».­ М.: «Дрофа», 2005. – 224 с. 6. Химический эксперимент как специфический метод обучения Э.Г.Злотников// Журнал «Первое сентября», методический лекторий. http://him.1september.ru/articlef.php?ID=200702404

Данное пособие повышает интерес к предмету, развивает познавательную, мыслительную, исследовательскую деятельность. Учащиеся анализируют, сравнивают, изучают и обобщают материал, получают новую информацию и практические навыки. Некоторые опыты учащиеся могут провести самостоятельно в домашних условиях, но большинство на занятиях химического кружка под руководством учителя.

Скачать:


Предварительный просмотр:

пгт. Новомихайловский

Муниципального образования

Туапсинский район

« Химические реакции вокруг нас»

Учитель:

Козленко

Алевтина Викторовна

2015 г.

« Вулкан» на столе. В тигель насыпают дихромат аммония, смешанный с металлическим магнием (в центре холмик смачивают спиртом). Зажигают «вулкан» горящей лучиной. Реакция экзотермическая, протекает бурно, вместе с азотом вылетают раскаленные частички оксида хрома (III) и

горящего магния. Если погасить свет, то создается впечатление извергающегося вулкана, из кратера которого высыпаются раскаленные массы:

(NH 4 ) 2 Cr 2 O 7 = Cr 2 O 3 +4Н 2 О + N 2 ; 2Mg + O 2 = 2MgO.

«Звездный дождь». Высыпают на лист чистой бумаги, тщательно перемешивая, по три ложечки перманганата калия, угольного порошка и порошка восстановленного железа. Полученную смесь высыпают в железный тигель, который укрепляют в кольце штатива и нагревают пламенем спиртовки. Начинается реакция, и смесь выбрасывается

в виде множества искр, производящих впечатление «огненного дождя».

Фейерверк в середине жидкости . В цилиндр наливают 5 мл концентрированной серной кислоты и осторожно по стенке цилиндра приливают 5 мл этилового спирта, затем бросают несколько кристалликов перманганата калия. На границе между двумя жидкостями появляется искорки, сопровождающиеся потрескиванием. Спирт воспламеняется при появлении кислорода, который образуется при взаимодействии перманганата калия с серной кислотой.

«Зеленый огонь» . Борная кислота с этиловым спиртом образуют сложный эфир:

Н 3 ВО 3 + 3С 2 Н 5 ОН = В(ОС 2 Н 5 ) + 3Н 2 О

В фарфоровую чашечку насыпают 1 г борной кислоты, приливают 10 мл спирта и 1 мл серной кислоты. Смесь перемешивают стеклянной палочкой и поджигают. Пары эфира горят зеленым пламенем.

Вода зажигает бумагу . В фарфоровой чашке смешивают пероксид натрия с мелкими кусочками фильтровальной бумаги. На приготовленную смесь капают несколько капель воды. Бумага воспламеняется.

Na 2 O 2 + 2Н 2 О = Н 2 О 2 + 2NaOH

2Н 2 О 2 = 2Н 2 О+О 2 |

Разноцветное пламя. Различные цвета пламени можно показать при сжигании хлоридов в спирте. Для этого берут чистые фарфоровые чашки с 2-3 мл спирта. В спирт добавляют по 0,2-0,5 г мелко растертых хлоридов. Смесь поджигают. В каждой чашке цвет пламени характерен для того катиона, который имеется в составе соли: литий - малиновый, натрий - желтый, калий - фиолетовый, рубидий и цезий - розово-фиолетовый, кальций - кирпично-красный, барий - желтовато-зеленый, стронций - малиновый и т. д.

Волшебные палочки. Три химических стакана наполняют растворами лакмуса, метилового оранжевого и фенолфталеина примерно на 3/4 объема.

В других стаканах подготавливают растворы соляной кислоты и гидрсксида натрия. Стеклянной трубочкой набирают раствор гидроксида натрия. Перемешивают этой трубочкой жидкости во всех стаканах, незаметно выливая каждый раз из нее небольшое количество раствора. Цвет жидкости в стаканах изменится. Затем набирают таким способом кислоту во вторую трубочку и перемешивают ею жидкости в стаканах. Окраска индикаторов опять резко изменится.

Волшебная палочка. Для опыта в фарфоровые чашки помещают заранее приготовленную кашицу из перманганата калия и концентрированной серной кислоты. Стеклянную палочку погружают в свежеприготовленную окислительную смесь. Быстро подносят палочку к влажному фитилю спиртовки или ватке, смоченной спиртом, фитиль воспламеняется. (Вносить повторно смоченную спиртом палочку в кашицу запрещается.)

2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + Н 2 О

6Мп 2 О 7 + 5С 2 Н 5 ОН +12H 2 SO 4 = l2MnSO 4 + 10СО 2 + 27Н 2 О

Проходит реакция с выделением большого количества теплоты, спирт воспламеняется.

Самовоспламеняющаяся жидкость. В фарфоровую чашку помещают 0,5 г слегка растертых в ступке кристаллов перманганата калия, а затем из пипетки наносят 3-4 капли глицерина. Через некоторое время глицерин воспламеняется:

14КМnO 4 +3C 3 H 6 (OH) 3 = 14MnO 2 +9CO 2 +5H 2 O+14КОН

Горение различных веществ в расплавленных кристаллах.

Три пробирки на 1/3 заполняют белыми кристаллами нитрата калия. Все три пробирки закрепляют вертикально в штативе и одновременно нагревают тремя спиртовками. Когда кристаллы расплавятся, в первую пробирку опускают кусочек нагретого древесного угля, во вторую - кусочек нагретой серы, в третью - немного зажженного красного фосфора. В первой пробирке уголь горит, «прыгая» при этом. Во второй пробирке кусочек серы горит ярким пламенем. В третьей пробирке красный фосфор сгорает, выделяя такое количество теплоты, что плавится пробирка.

Вода - катализатор. На стеклянной пластинке осторожно смешивают

4 г порошкообразного йода и 2 г цинковой пыли. Реакция не происходит. На смесь капают несколько капель воды. Начинается экзотермическая реакция с выделением фиолетового пара йода, который реагирует с цинком. Опыт проводят под тягой.

Самовоспламенение парафина. Заполняют 1/3 пробирки кусочками парафина и нагревают до температуры его кипения. Льют кипящий парафин из пробирки, с высоты примерно 20 см, тонкой струей. Парафин вспыхивает и сгорает ярким пламенем. (В пробирке парафин загореться не может, так как нет циркуляции воздуха. При выливании парафина тонкой струей к нему облегчается доступ воздуха. А так как температура расплавленного парафина выше его температуры воспламенения, од вспыхивает.)

Муниципальное автономное общеобразовательное учреждение

Средняя общеобразовательная школа № 35

пгт. Новомихайловский

Муниципального образования

Туапсинский район

Занимательные опыты по тематике

« Химия в нашем доме»

Учитель:

Козленко

Алевтина Викторовна

2015 г

Дым без огня. В один чисто вымытый цилиндр наливают несколько капель концентрированной соляной кислоты, а в другой - раствор аммиака. Оба цилиндра закрывают крышками и ставят друг от друга на некотором расстоянии. Перед опытом показывают, что цилиндры пусть. Во время демонстрации цилиндр с соляной кислотой (на стенках) переворачивают вверх дном и ставят на крышку цилиндра с аммиаком. Крышку убирают: образуется белый дым.

«Золотой» нож. К 200 ил насыщенного раствора медного купороса добавляют 1 мл серной кислоты. Берут нож, почищенный наждачной бумагой. Опускают нож на несколько секунд в раствор медного купороса, вынимают, ополаскивают его и сейчас же насухо протирают полотенцем. Нож становится «золотым». Он покрылся ровным блестящим слоем меди.

Примерзание стакана. В стакан с водой всыпают аммиачную селитру и ставят его на влажную фанерку, которая примерзает к стакану.

Цветные растворы . Перед опытом обезвоживают кристаллогидраты солей меди, никеля, кобальта. После добавления к ним воды образуются цветные растворы. Безводный белый порошок соли меди образует раствор голубого цвета, зеленый порошок соли никеля-зеленого, синий порошок соли 4 кобальта - красного цвета.

Кровь без раны. Для проведения опыта используют 100 мл 3%-го раствора хлорида железа FeCI 3 в 100 ил 3%-го раствора роданида калия KCNS. Для демонстрации опыта используют детский полиэтиленовый меч. Вызывают кого-нибудь из зрителей на сцену. Ваткой промывают ладонь раствором FeCI 3 , а бесцветным раствором KCNS смачивают меч. Далее мечом проводят по ладони: на бумагу обильно течет «кровь»:

FeCl 3 + 3KCNS=Fe(CNS) 3 +3KCl

«Кровь» с ладони смывают ватой, смоченной раствором фторида натрия. Показывают зрителям, что раны нет и ладонь совершенно чистая.

Моментальная цветная «фотография». Желтая и красная кровяные соли, взаимодействуя с солями тяжелые металлов, дают различного цвета продукты реакций: желтая кровяная соль с сульфатом железа (III) дает синее окрашивание, с солями меди (II) -темно-коричневое, с солями висмута - желтое, с солями железа (II) - зеленое. Вышеуказанными растворами солей на белой бумаге выполняют рисунок и высушивают его. Поскольку растворы бесцветны, то и бумага остается неокрашенной. Для проявления таких рисунков по бумаге проводят влажным тампоном, смоченным раствором желтой кровяной соли.

Превращение жидкости в студень. В химический стакан наливают 100 г раствора силиката натрия и прибавляют 5 мл 24%-го раствора соляной кислоты. Размешивают стеклянной палочкой смесь этих растворов и держат палочку в растворе вертикально, Через 1-2 мин палочка уже не падает в растворе, потому что жидкость загустела так, что не выливается из стакана.

Химический вакуум в склянке. Заполняют склянку углекислым газом. Наливают в нее немного концентрированного раствора гидроксида калия и закрывают отверстие склянки очищенным крутым яйцом, поверхность которого смазана тонким слоем вазелина. Яйцо постепенно начинает втягиваться в склянку и с резким звуком выстрела падает на ее дно.

(В склянке образовался вакуум в результате реакции:

СО 2 + 2КОН = К 2 СО 3 +Н 2 О.

Давление наружного воздуха проталкивает яйцо.)

Несгораемый платочек. Платочек пропитывают раствором силиката натрия, высушивают и складывают. Для демонстрации негорючести его смачивают спиртом и поджигают. Платочек надо держать тигельными щипцами в расправленном виде. Спирт сгорает, а ткань, пропитанная силикатом натрия, остается невредимой.

Сахар горит огнем. Взять щипцами кусочек сахара-рафинада и попытаться его поджечь - сахар не загорается. Если же этот кусочек посыпать пеплом от папиросы, а затем поджечь его спичкой, сахар загорается ярким синим пламенем и быстро сгорает.

(В пепле содержатся соединения лития, которые действуют как катализатор.)

Уголь из сахара. Отвешивают 30 г сахарной пудры и переносят ее в химический стакан. Приливают к сахарной пудре ~ 12 мл концентрированной серной кислоты. Перемешивают стеклянной палочкой сахар и кислоту в кашеобразную массу. Через некоторое время смесь чернеет и разогревается, и вскоре из стакана начинает выползать пористая угольная масса.

Муниципальное автономное общеобразовательное учреждение

Средняя общеобразовательная школа № 35

пгт. Новомихайловский

Муниципального образования

Туапсинский район

Занимательные опыты по тематике

« Химия в природе»

Учитель:

Козленко

Алевтина Викторовна

2015 г

Добывание «золота». В одной колбе с горячей водой растворяют ацетат свинца, а в другой - иодид калия. Оба раствора сливают в большую колбу, дают смеси остыть и демонстрируют красивые золотистые чешуйки, плавающие в растворе.

Рb(СН 3 СОО) 2 + 2КI = РЬI 2 + 2СНзСООК

Минеральный «хамелеон». В пробирку наливают 3 мл насыщенного раствора перманганата калия и 1 мл 10%-го раствора гидроксида калия.

К полученной смеси при взбалтывании добавляют 10 - 15 капель раствора сульфита натрия до появления темно-зеленого цвета. При перемешивании цвет раствора становится синим, затем фиолетовым и, наконец, малиновым.

Появление темно-зеленого цвета объясняется образованием манганата калия

К 2 МпО 4 :

2КМпО 4 + 2КОН + Na 2 SO 3 = 2К 2 МпО 4 + Na 2 SO 4 + Н 2 О.

Изменение темно-зеленого цвета раствора объясняется распадом манганата калия под влиянием кислорода воздуха:

4К 2 МпО 4 +О 2 + 2Н 2 О = 4КМпО 4 + 4КОН.

Превращение красного фосфора в белый. В сухую пробирку опускают стеклянную палочку и кладут красного фосфора в объеме полгорошины. Дно пробирки сильно нагревают. Сначала появляется белый дымок. При дальнейшем нагревании на холодных внутренних стенках пробирки появляются желтоватые капельки белого фосфора. Он осаждается и на стеклянной палочке. После прекращения нагревания пробирки стеклянную палочку вынимают. Белый фосфор на ней воспламеняется. Концом стеклянной палочки снимают белый фосфор и на внутренних стенках пробирки. На воздухе происходит повторная вспышка.

Опыт проводит только учитель.

Фараоновы змеи. Для проведения опыта готовят соль - роданид ртути (II) путем смешивания концентрированного раствора нитрата ртути (II) с 10 %-ным раствором роданида калия. Осадок фильтруют, промывают водой и делают палочки толщиной 3-5 мм и длиной 4 см. Палочки высушивают на стекле при комнатной температуре. Во время демонстрации палочки кладут на демонстрационный столик и поджигают. В результате разложения роданида ртути (II) выделяются продукты, которые принимают вид извивающейся змеи. Ее объем во много раз превышает первоначальный объем соли:

Hg(NO 3 ) 2 +2KCNS = Нg(CNS) 2 + 2KNO 3

2Hg (CNS| 2 = 2HgS + CS 2 + C 3 N 4 .

Темно-серая «змея». В кристаллизатор или на стеклянную пластинку насыпают конусом песок и пропитывают его спиртом. В центре конуса делают отверстие и помещают туда смесь из 2 г пищевой соды и 13 г сахарной пудры. Поджигают спирт. Cаxap превращается в карамель, а сода разлагается с выделением оксида углерода (IV). Из песка выползает толстая темно-серая «змея». Чем дольше горит спирт, тем длиннее «змея».

«Химические водоросли ». В стакан наливают разбавленный равным объемом воды pаствор силикатного клея (силиката натрия). На дно стакана бросают кристаллы хлоридов кальция, марганца (II), кобальта (II), никеля (II) и других металлов. Через некоторое время в стакане начинают расти кристаллы соответствующих труднорастворимых силикатов, напоминающие водоросли.

Горящий снег. Вместе со снегом в банку кладут 1-2 кусочка карбида кальция. После этого к банке подносят горящую лучинку. Снег вспыхивает и горит коптящим пламенем. Реакция происходит между карбидом кальция и водой:

СаС 2 + 2Н 2 О = Са(ОН) 2 + С 2 Н 2

Выделяющийся газ - ацетилен горит:

2С 2 Н 2 +5О 2 = 4СО 2 + 2Н 2 О.

«Буран» в стакане. В химический стакан емкостью 500 мл насыпают 5 г бензойной кислоты и кладут веточку сосны. Закрывают стакан фарфоровой чашкой с холодной водой и нагревают над спиртовкой. Кислота сначала плавится, потом превращается в пар, и стакан заполняется белым «снегом», который покрывает веточку.

Средняя общеобразовательная школа № 35

п. Новомихайловский

Муниципального образования

Туапсинский район

Занимательные опыты по тематике

« Химия в сельском хозяйстве»

Учитель:

Козленко

Алевтина Викторовна

2015 г

Разные способы получения «молока». Для опыта готовят растворы: хлорида натрия и нитрата серебра; хлорида бария и сульфата натрия; хлорида кальция и карбоната натрия. Сливают эти растворы в отдельные стаканы. В каждом из них образуется «молоко» - нерастворимые соли белого цвета:

NaCI+ AgNO 3 = AgCI ↓ + NaNO 3 ;

Na 2 SO 4 + ВаСI 2 = BaSO 4 ↓ + 2NaCI;

Na 2 CO 3 + CaCI 2 = CaCO 3 ↓+ 2NaCI.

Превращение «молока в воду». К белому осадку, полученному сливанием растворов хлорида кальция и карбоната натрия, добавляют избыток соляной кислоты. Жидкость вскипает и становится бесцветной и

прозрачной:

CaCl 2 +Na 2 CO 3 = CaCO 3 ↓+2NaCl;

СаСОз↓ + 2НСI = СаСI 2 +Н 2 О + СО 2 .

Оригинальное яйцо . В стеклянную банку с разбавленным раствором соляной кислоты опускают куриное яйцо. Через 2-3 минуты яйцо покрывается пузырьками газа и всплывает на поверхность жидкости. Пузырьки газа отрываются, а яйцо снова опускается на дно. Так, ныряя и поднимаясь, яйцо двигается до растворения скорлупы.

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа № 35

п. Новомихайловский

муниципального образования

Туапсинский район

Внеклассное мероприятие

«Интересные вопросы о химии»

Учитель:

Козленко

Алевтина Викторовна

2015 г.

Викторина.

1. Назовите десять наиболее распространенных в земной коре элементов.

2. Какой химический элемент открыт раньше на Солнце, нежели на Земле?

3. Каков редкостный металл входит в состав некоторых драгоценных камней?

4. Что такое гелийный воздух?

5. Какие металлы и сплавы плавятся в горячей воде?

6. Какие вы знаете тугоплавкие металлы?

7. Что такое тяжелая вода?

8. Назовите элементы, которые входят в состав человеческого организма.

9. Назовите самые тяжелые газ, жидкость и твердое вещество.

10. Сколько элементов используется в изготовлении автомобиля?

11. Какие химические элементы поступают в растение из воздуха, воды, почвы?

12. Какие соли серной и соляной кислот используют для защиты растений от вредителей и болезней?

13. Каким расплавленным металлом можно за морозить вод/ ?

14. Полезно ли человеку пить чистую воду?

15. Кто впервые методами синтеза и анализа определил количественный химический состав воды?

16 . Какой газ в твердом состоянии при температуре - 2>252 °С соединяется со взрывом с жидким водородом?

17. Какой элемент есть основа всего минерального мира нанки планеты?

18. Какое соединение хлора с ртутью является сильным ядом?

19. Названия каких элементов связаны с радиоактивными процессами?

Ответы:

1. Наиболее распространенны в земной коре следующие элементы: кислород, кремний, алюминий, железо, кальций, натрий, магний, калий, водород, титан. Эти элементы занимают приблизительно 96,4% массы земной коры; на все другие элементы остается только 3.5% массы земной коры.

2. Гелий сначала был открыт на Солнце, и только через четверть столетия его нашли на Земле.

3. Металл бериллий встречается в природе как составная часть драгоценных камней (берилл, аквамарин, александрит и др.).

4. Так называют искусственный воздух, в состав которого входит примерно 20% кислорода и 80% гелия.

5. В горячей воде плавятся такие металлы: цезий (+28,5 °С), галлий (+ 29,75 °С), рубидий (+ 39 °С), калий (+63 °С). Сплав Вуда (50% Bi, 25% Pb, 12,5% Sn, 12,5% Cd) плавится при температуре +60,5 °С.

6. Наиболее тугоплавкие металлы такие как: вольфрам (3370 °С), рений (3160 °С), тантал (3000 °С), осмий (2700?С), молибден (2620 °С), ниобий (2415 °С).

7. Тяжелой водой называют соединение изотопа водорода дейтерия с кислородом D 2 О. Тяжелая вода в небольшом количестве есть в обыкновенной воде (1 весовая часть на 5000 весовых частей).

8. В состав человеческого организма входит более 20 элементов: кислород (65,04%), углерод (18,25%), водород (10,05%), азот (2,65%), кальций (1,4%), фосфор (0,84%), калий (0,27%), хлор (0,21%), сера (0,21%) и

др.

9. Самым тяжелым газом, взятым при нормальных условиях, является шестифтористый вольфрам WF 6 , самой тяжелой жидкостью - ртуть, самым тяжелым твердым веществом - металл осмий Os.

10. В изготовлении автомобиля используется приблизительно 50 химических элементов, которые входят в состав 250 разных веществ и материалов.

11. Углерод, азот, кислород поступают в растение из воздуха. Водород и кислород из воды. Все остальные элементы поступают в растение из почвы.

12. Для защиты растений от вредителей и болезней используют сульфаты меди и железа, хлориды бария, цинка.

13. Заморозить воду можно ртутью, она плавится при температуре 39 °С.

14. Относительно чистой водой химики считают дистиллированную воду. Но она вредна для организма, потому что в ней нет полезных солей и газов. Она вымывает из клеток желудка соли, которые содержатся в клеточном соке.

15. Количественный химический состав воды сначала методом синтеза, а потом анализа определил Лавуазье.

16. Фтор - очень сильный окислитель. В твердом состоянии он соединяется с жидким водородом при температуре -252 °С.

17. Кремний составляет 27,6% земной коры и является главным элементом в царстве минералов и горных пород, которые исключительно состоят из соединений кремния.

18. Сильным ядом является соединение хлора с ртутью - сулема. В медицине сулема применяется как дезинфицирующее средство (1:1000).

19. С радиоактивными процессами связаны названия таких элементов: астат, радий, радон, актиний, протактиний.

Знаете ли вы, что...

На производство 1 т строительного кирпича требуется 1-2 м 3 воды, а на производство 1 т азотных удобрений и 1 т капрона - соответственно 600, 2500 м 3 .

Слой атмосферы на высоте от 10 до 50 км называют озоносферой. Общее количество газа озона невелико; при нормальном давлении и температуре О °С он распределился бы по земной поверхности тонким слоем 2-3 мм. Озон верхних слоев атмосферы поглощает большую часть ультрафиолетовой радиации, которую посылает Солнце, и предохраняет все живое от ее губительного влияния.

Поликарбонат - полимер, обладает интересными особенностями. Он может быть твердым, как металл, эластичным, как шелк, прозрачным, как хрусталь, или окрашенным в разные цвета. Полимер можно отливать в форме. Он не горит, сохраняет свои свойства при температурах от +135 до -150 °С.

Озон токсичен. В малых концентрациях (при грозе) запах озона приятный, освежающий. При концентрации в воздухе свыше 1% его запах крайне неприятен и дышать им невозможно.

Кристалл поваренной соли при медленной кристаллизации может достигнуть размера более полуметра.

Чистое железо встречается на Земле только в виде метеоритов.

Горящий магний нельзя тушить углекислым газом, так как он взаимодействует с ним и продолжает гореть за счет выделяющегося кислорода.

Самый тугоплавкий металл - вольфрам (t пл 3410 °С), а самый легкоплавкий металл - цезий (t пл 28,5 °С).

Самый большой самородок золота, найденный на Урале в 1837 г., весил около 37 кг. В Калифорнии был найден самородок золота в 108 кг, а в Австралии -250 кг.

Бериллий называют металлом неутомимости, потому что пружины, изготовленные из его сплава, могут выдержать до 20 млрд. циклов нагрузки (они практически вечны).

ЛЮБОПЫТНЫЕ ЦИФРЫ И ФАКТЫ

Заменители фреона . Как известно, фреоны и другие синтетические вещества, содержащие хлор и фтор, разрушают озоновый слой атмосферы. Советские ученые нашли замену фреону - углеводородные пропиланы (соединения пропана и бутана), безвредные для атмосферного слоя. К 1995 г. химическая промышленность будет выпускать 1 млрд. аэрозольных упаковок.

ТУ-104 и пластмассы. В самолете ТУ-104 насчитывается 120 000 деталей из органического стекла, других пластических масс и из различных комбинаций их с другими материалами.

Азот и молнии. Около 100 разрядов молний, ударяющих каждую секунду, являются одним из источников соединений азота. При этом происходят следующие процессы:

N 2 + О 2 = 2NO

2NO+O 2 =2NO 2

2NO 2 +H 2 О+1/2O 2 =2HNO 3

Таким образом в почву попадают нитратные ионы, которые усваиваются растениями.

Метан и потепление . Содержание метана в нижних слоях атмосферы (тропосферы) составляло 10 лет назад в среднем 0,0152 частей/млн. и было относительно постоянным. В последнее время наблюдается систематическое увеличение его концентрации. Рост содержания метана в тропосфере способствует усилению парникового эффекта, так как молекулы метана поглощают инфракрасное излучение.

Золою в морской воде . В воде морей и океанов находятся растворенные соли золота. Подсчеты показывают, что в воде всех морей и океанов содержится около 8 млрд. т золота. Ученые ищут наиболее выгодные способы добычи золота из морской воды. В 1 т морской воды содержимся 0,01-0,05 мг золота.

«Белая сажа» . Кроме обычной, всем хорошо известной черной сажи, имеется и «белая сажа». Гак называется порошок из аморфной двуокиси кремния, применяющийся в качестве наполнителя к каучуку при изготовлении из него резины.

Угроза от микроэлементов . Активная циркуляция накапливающихся в природных средах микроэлементов создает, по мнению специалистов, серьезную угрозу для здоровья современного человека и грядущих поколений. Их источники - миллионы тонн ежегодно сжигаемого топлива, доменное производство, цветная металлургия, внесенные в почву минеральные удобрения и т. д.

Прозрачная резина. При изготовлении резины из каучука применяют оксид цинка (он ускоряет процесс вулканизации каучука). Если вместо оксида цинка прибавить к каучуку пероксид цинка, то резина получается прозрачной. Через слой такой резины толщиной 2 см можно свободно читать книгу.

Масло дороже золота. Для приготовления многих сортов духов требуется розовое масло. Оно представляет собой смесь душистых веществ, извлекаемых из лепестков розы. Для получения I кг этого масла необходимо собрать и подвергнуть химической обработке 4-5 т лепестков. Розовое масло цедится в три раза дороже золота.

Железо внутри нас. В организме взрослого человека содержится 3,5 г железа. Это очень немного по сравнению, например, с кальцием, которого в организме больше 1 кг. Но если мы сравним не общее содержание этих элементов, а их концентрацию только в крови, то здесь железа раз в пять больше, чем кальция. В эритроцитах крови сконцентрирована основная масса железа, входящего в состав организма (2,45 г). Железо содержится в мышечном белке - миоглобине и во многих ферментах. 1% железа постоянно циркулирует в плазме - жидкой части крови. Главное «депо» железа - печень: здесь у взрослого мужчины может быть запасено до 1 г железа. Между всеми тканями и органами, содержащими железо, происходит постоянный обмен. Около 10% железа кровь приносит в костный мозг. Оно входит в состав пигмента, окрашивающего волосы.

Фосфор - элемент жизни и мысли . В организме животных фосфор сосредоточен главным образом в скелете, мышцах и нервной ткани. Тело человека содержит в среднем около 1,5 кг фосфора. Из этой массы 1,4 кг приходится на кости, около 130 г - на мышцы и 12 г - на нервы и мозг. Почти все физиологические процессы, происходящие в нашем организме, связаны с превращениями фосфорорганических веществ.

Асфальтовое озеро . На острове Тринидад в группе Малых Антильских островов имеется озеро, наполненное не водой, а застывшим асфальтом. Площадь его составляет 45 га, а глубина доходит до 90 м. Предполагают, что озеро образовалось в кратере вулкана, в который по подземным трещинам проникала нефть. Из него добыты уже миллионы тонн асфальта.

Микролегирование. Микролегирование - одна из центральных проблем современного материаловедения. Вводя небольшие количества (примерно 0,01%) некоторых элементов, удается заметно изменить свойства сплавов. Связано это с сегрегацией, т. е. образованием избыточной концентрации легирующих элементов на дефектах структуры.

Виды угля. «Бесцветный уголь» - это газ, «желтый уголь» - солнечная энергия, «зеленый уголь» - растительное топливо, «синий уголь» - энергия приливов и отливов морей, «голубой уголь» - движущая сила ветра, «красный уголь» - энергия вулканов.

Самородный алюминий. Недавние находки самородного металлического алюминия поставили вопрос о путях его образования. Как считают ученые, в природных расплавах под воздействием электротеллурических токов (электрических токов, текущих в земной коре) происходит электрохимическое восстановление алюминия.

Гвоздь из пластической массы. Пластические массы - поликарбонаты оказались пригодными и для изготовления гвоздей. Гвозди из них свободно вбиваются в доску и не ржавеют, во многих случаях отлично заменяя железные гвозди.

Серная кислота в природе . Серную кислоту получают на химических заводах. Оказалось, что она образуется в природе, прежде всего в вулканах. Например, в водах реки Рио-Негро, берущей начало у вулкана Пурачо в Южной Америке, в кратере которого образуется сера, содержится до 0,1% серной кислоты. Река ежедневно уносит в море до 20 л «вулканической» серной кислоты. В СССР серная кислота была обнаружена академиком Ферсманом в месторождениях серы в Каракумах.

Увлекательные химические игры

Кто быстрее и больше? Учитель предлагает участникам игры написать названия элементов, оканчивающиеся на одну и ту же букву, например, на «н» (аргон, криптон, ксенон, лантан, молибден, неон, радон и т. д.). Игру можно усложнить, предложив найти эти элементы в таблице

Д. И. Менделеева и указать, какие из них металлы, а какие неметаллы.

Составьте названия элементов. Учитель вызывает учащегося к доске и предлагает ему записать ряд слогов. Остальные учащиеся записывают их в тетради. Задание: за 3 мин составить из записанных слогов возможные названия элементов. Например, из слогов «се, тий, дий, ра, лев, ли» можно составить слова: «литий, сера, радий, селен».

Составление уравнений реакций. «Кто умеет быстро составлять уравнения реакций, например, между металлом и кислородом? - спрашивает учитель, обращаясь к участникам игры.- Запишите уравнение реакции окисления алюминия. Тот, кто первым напишет уравнение, пусть поднимет руку».

Кто больше знает? Полоской бумаги учитель закрывает в таблице

Д. И. Менделеева какую-нибудь группу элементов (или период) и поочередно предлагает командам назвать и написать знаки элементов закрытой группы (или периода). Победителем выходит тот ученик, который больше назовет химических элементов и правильно напишет их знаки.

Значение названий элементов в переводе с иностранного языка. Что означает в переводе с греческого языка слово «бром»? Можно проводить эту же игру и на выяснение участниками значения названий элементов в переводе с латинского языка (например, рутений, теллур, галлий, гафний, лютеций, гольмий и др.).

Назовите формулу. Учитель называет какое -нибудь соединение, например, гидроксид магния. Играющие, в руках которых таблички с формулами, выбегают, держа в руках табличку с соответствующей формулой.

Шарады, головоломки,

чайнворды, кроссворды.

1 . Первые четыре буквы фамилии знаменитого греческого философа» обозначают слово «народ» на греческом языке без последней буквы, последние четыре - это остров в Средиземном море; в целом - фамилия греческого философа, основателя атомистической теории. (Демос, Крит - Демокрит.)

2. Первый слог названия химического элемента является первым и у названия одного из элементов платиновой группы; в целом - это металл, за получение которого Мария Склодовская-Кюри получила Нобелевскую премию. (Радон, родий - радий.)

3. Первый слог названия химического элемента является также первым у названия «лунного элемента»; второй является первым у названия металла, открытого М. Склодовской-Кюри; в целом - это (на алхимическом языке) «желчь бога Вулкана». (Селен, радий - сера.)

4. Первый слог названия является также первым слогом названия удушливого газа, получаемого синтезом оксида углерода (II) и хлора; второй слог является первым у названия раствора формальдегида в воде; в целом - это химический элемент, о котором А. Е. Ферсман писал, что это элемент жизни и мысли. (Фосген, формалин - фосфор.)


УЧЕБНЫЙ ПЛАН КУРСА

№ газеты Учебный материал
17 Лекция № 1. Содержание школьного курса химии и его вариативность. Пропедевтический курс химии. Kурс химии основной школы. Kурс химии средней школы. (Г.М.Чернобельская, доктор педагогических наук, профессор)
18 Лекция № 2. Предпрофильная подготовка учащихся основной школы по химии. Сущность, цели и задачи. Предпрофильные элективные курсы. Методические рекомендации по их разработке. (Е.Я.Аршанский, доктор педагогических наук, доцент)
19 Лекция № 3. Профильное обучение химии на старшей ступени общего образования. Единый методический подход к структурированию содержания в классах разного профиля. Вариативные компоненты содержания. (Е.Я.Аршанский)
20 Лекция № 4. Индивидуализированные технологии обучения химии. Основные требования построения технологий индивидуализированного обучения (ТИО). Организация самостоятельной работы учащихся на различных этапах урока в системе ТИО. Примеры современных ТИО. (Т.А.Боровских, кандидат педагогических наук, доцент)
21 Лекция № 5. Модульная технология обучения и ее использование на уроках химии. Основы модульной технологии. Методики конструирования модулей и модульные программы по химии. Рекомендации по использованию технологии на уроках химии. (П.И.Беспалов, кандидат педагогических наук, доцент)
22 Лекция № 6. Химический эксперимент в современной школе. Виды эксперимента. Функции химического эксперимента. Проблемный эксперимент с использованием современных технических средств обучения. (П.И.Беспалов)
23 Лекция № 7. Экологическая компонента в школьном курсе химии. Kритерии отбора содержания. Экологоориентированный химический эксперимент. Учебно-исследовательские экологические проекты. Задачи с экологическим содержанием. (В.М.Назаренко, доктор педагогических наук, профессор)
24 Лекция № 8. Kонтроль результатов обучения химии. Формы, виды и методы контроля. Тестовый контроль знаний по химии. (М.Д.Трухина, кандидат педагогических наук, доцент)

Итоговая работа. Разработка урока в соответствии с предложенной концепцией. Kраткий отчет о проведении итоговой работы, сопровождаемый справкой из учебного заведения, должен быть направлен в Педагогический университет не позднее 28 февраля 2007 г.

П.И.БЕСПАЛОВ

ЛЕКЦИЯ № 6
Химический эксперимент в современной школе

План лекции

Виды эксперимента и методика его использования.

Функции химического эксперимента.

Проблемный эксперимент.

Есть три источника знания: авторитет, разум, опыт.
Однако авторитет недостаточен, если у него нет
разумного основания, без которого он производит не понимание,
а лишь приятие на веру; и разум один не может отличить софизма
от настоящего доказательства, если он не может оправдать
свои выводы опытом.

Роджер Бэкон

ВВЕДЕНИЕ

Химический эксперимент – важнейший метод и средство обучения химии. Методика применения химического эксперимента на уроках химии достаточно исследована и разработана учеными-методистами. Однако в настоящее время вновь возникает интерес к данной тематике. Это связано прежде всего с тем, что происходит резкое изменение содержания учебного предмета, появление пропедевтических и элективных курсов. Все это требует поиска новых опытов, вписывающихся в современное содержание обучения химии в школе.

В целом как учебное содержание, так и отбор химического эксперимента зависит от социального заказа общества. Это можно пронаблюдать по публикациям журнала «Химия в школе». Например, в послевоенное время, когда восстанавливалось разрушенное войной народное хозяйство, большое число статей было посвящено химическим производствам. В рубриках «Химический эксперимент» и «Внеклассная работа» описывались действующие лабораторные установки по получению различных веществ. Позже приоритетным направлением стало сельское хозяйство. Сельскохозяйственная тематика проявилась в синтезе гербицидов, пестицидов, различных стимуляторов роста и т.д.

ВИДЫ ЭКСПЕРИМЕНТА И МЕТОДИКА ЕГО ИСПОЛЬЗОВАНИЯ

Общеизвестно, что школьный химический эксперимент классифицируют на демонстрационный и ученический. В зависимости от цели и способа организации ученический эксперимент подразделяют на лабораторные опыты, практические занятия и домашние опыты.

Демонстрационный эксперимент

Демонстрационный химический эксперимент – главное средство наглядности на уроке. Это определяется спецификой химии как экспериментальной науки. Поэтому эксперимент занимает одно из ведущих мест. Он позволяет не только выявлять факты, но и знакомить с методами химической науки.

Демонстрационный эксперимент проводит учитель или лаборант. В отдельных случаях несложный эксперимент может быть показан и учеником.

Когда применяется демонстрационный эксперимент на уроке?

В начале школьного курса – для привития экспериментальных умений и навыков, интереса к химии, ознакомления с посудой, веществами, оборудованием.

Когда он сложен для самостоятельного выполнения учащимися (получение озона).

Когда он опасен для учащихся (взрыв водорода с кислородом).

Нет соответствующего оборудования и реактивов.

Общеизвестны и требования к демонстрационному эксперименту .

1. Н а г л я д н о с т ь – большой объем реактивов и посуды, виден с последних рядов, на столе не должно быть лишних деталей. Для усиления наглядности могут быть использованы кодоскоп, компьютер, предметный столик, цветные экраны.

2. П р о с т о т а – в приборах не должно быть нагромождения лишних деталей. Следует помнить, что объект изучения не прибор, а химический процесс, происходящий в нем. Чем проще прибор, тем легче объяснить опыт. Поэтому при использовании аппарата Киппа, газометра, прибора Кирюшкина необходимо объяснить принцип работы прибора.

3. Б е з о п а с н о с т ь – учитель химии несет ответственность за жизнь учащихся. Поэтому все опыты должны проводиться с соблюдением правил техники безопасности. При демонстрации опытов со взрывами необходимо использовать защитный экран; при получении и демонстрации ядовитых газов – принудительную вентиляцию (вытяжку) и т.д.

4. Н а д е ж н о с т ь – неудавшийся опыт вызывает разочарование у учащихся. Поэтому необходима отработка эксперимента до урока. При этом уточняется время, которое затрачивается на его проведение.

5. Т е х н и к а в ы п о л н е н и я о п ы т а должна быть безукоризненная. Поэтому если осваивается новый эксперимент, то он должен быть хорошо отработан. Ошибки, допущенные учителем, легко переносятся на учеников.

6. Н е о б х о д и м о с т ь о б ъ я с н е н и я д е м о н с т р а ц и о н н о г о э к с п е р и м е н т а. Перед демонстрацией опыта необходимо указать на цель эксперимента, сориентировать наблюдения эксперимента учащимися, после проведения опыта сделать выводы.

Методика проведения демонстрационных опытов

1. Постановка цели опыта: для чего проводится данный опыт, в чем должны убедиться учащиеся, что понять.

2. Описание прибора, где проводится опыт, и условий его проведения.

3. Организация наблюдений учащихся: учитель должен сориентировать учеников, за какой частью прибора должны вестись наблюдения.

4. Выводы.

Бывает, что при проведении урока используется серия демонстрационных опытов. Как определить последовательность их демонстрации? Рассмотрим, чем нужно руководствоваться при этом на примере темы «Кислород».

При изучении темы «Кислород» учитель демонстрирует учащимся горение в кислороде серы, угля, фосфора и железа. Правильной будет следующая последовательность демонстраций: горение угля, горение серы, горение фосфора, горение железа. Такой порядок объясняется внешним эффектом, сопровождающим горение данных веществ. Уголь горит более энергично в кислороде, чем на воздухе. Горение серы в кислороде сопровождается появлением большого синего пламени. Фосфор ослепительно сгорает в кислороде. И наконец, горение железа похоже на горение бенгальских огней.

При изменении данного порядка эффект последующих реакций будет ниже предыдущих, что, несомненно, вызывает разочарование учащихся. Кроме того, мы демонстрируем сначала горение в кислороде веществ, горючих на воздухе (С, S, Р), и только потом горение негорючего вещества железа. Наконец, первые три процесса – это взаимодействие кислорода с неметаллами, а последняя демонстрация – взаимодействие кислорода с металлами. Если учитель акцентирует внимание на этом, то он формирует системность знаний учащихся.

Таким образом, при отборе опытов необходимо оптимально и гармонично включать их в канву урока.

Ученический эксперимент

Ученический эксперимент разделяют на лабораторные опыты и практические работы. Некоторые методисты выделяют еще и практикум, который проводится на заключительном этапе изучения химии.

Дидактическая цель лабораторных опытов состоит в приобретении новых знаний, т.к. они проводятся при изучении нового материала. Практические работы обычно проводятся в конце изучения темы, и их целью является закрепление и систематизация знаний, формирование и развитие экспериментальных умений учащихся.

При выполнении ученического эксперимента необходимо учитывать следующие этапы:

1) осознание цели опыта;

2) изучение веществ;

3) монтаж прибора (где это необходимо);

4) выполнение опыта;

5) анализ результатов;

6) объяснение полученных результатов, написание химических уравнений;

7) формулировка выводов и составление отчета.

По форме организации лабораторные опыты могут быть индивидуальными, групповыми и коллективными. Очень важно правильно организовать деятельность учащихся, чтобы на выполнение опыта затрачивалось лишь отведенное время. Для этого необходима тщательная подготовка учебного оборудования и реактивов. Склянки с реактивами должны иметь этикетки. Если реактивы выдаются в пробирках, то они должны быть пронумерованы, а на доске или на листочках сделаны соответствующие записи. Во время выполнения опытов необходимо руководить действиями учащихся. После выполнения работы нужно организовать обсуждение результатов. Оформление результатов опытов следует вести в рабочих тетрадях. Недостатком лабораторных опытов является то, что при их выполнении невозможно формировать экспериментальные умения и навыки. Эту задачу выполняют практические занятия.

Практические занятия делятся на два вида: проводимые по инструкции и экспериментальные задачи. Инструкция для практической работы представляет собой ориентировочную основу деятельности учащихся. На начальном этапе изучения химии даются подробные инструкции с детальным описанием выполняемых операций. По мере выполнения практических работ и усвоения экспериментальных умений инструкции делаются более свернутыми. Экспериментальные задачи не содержат инструкций, в них есть только условия. Разрабатывать план решения задачи и осуществлять его ученик должен самостоятельно.

Перед началом любой практической работы учитель знакомит учащихся с правилами безопасной работы в кабинете химии, обращает внимание на выполнение сложных операций. При выполнении первых практических работ учитель приводит примерную форму отчета, помогает учащимся сделать выводы.

Подготовка к решению экспериментальных задач проводится поэтапно. Сначала задачи решают всем классом теоретически. Для этого анализируется условие задачи, формулируются вопросы, на которые необходимо дать ответы, предлагаются опыты. Затем один ученик решает задачу у доски теоретически, экспериментально доказывает правильность своих предположений. После этого класс приступает к выполнению аналогичных задач на рабочих местах. Опытные учителя постепенно вводят экспериментальные задачи в учебный процесс. Так, например, при проведении практической работы «Получение кислорода и изучение его свойств» учитель предлагает хорошо успевающим ученикам задачу: «Какие из предложенных веществ (КNО 3 , К 2 SО 4 , МnО 2) можно использовать для получения кислорода?»

Практическое занятие – сложный вид урока. Учителю нужно вести наблюдение за всем классом, корректировать действия учащихся. Большую помощь педагогу могут оказать специально подготовленные ученики класса – прокторы. Это может быть член кружка, ученик, интересующийся химией, или просто желающий.

Учитель приглашает прокторов во внеурочное время в кабинет химии и предлагает им выполнить предстоящую практическую работу под своим наблюдением, обращая внимание на возможные ошибки и тонкости.

Затем каждому проктору выдается лист учета и разъясняется, как его следует заполнять. Приведем фрагмент такого листа для практической работы «Получение медного купороса».

Лист учета

Содержание операции Оценка выполнения операции
Иванов Петров Сидоров Сергеев
Взять склянку с раствором серной кислоты так, чтобы этикетка была под ладонью
Налить в стакан 20 мл раствора серной кислоты
Снять каплю кислоты с горлышка склянки
Собрать правильно штатив и на сетку поставить стакан с серной кислотой
Поставить спиртовку под сетку так, чтобы верхняя часть пламени касалась сетки
.............................. и т.д.
Чистота рабочего места
Соблюдение правил техники безопасности

Прокторов нужно учить еще и общению, стилю поведения. Важно, чтобы к порученному заданию они относились ответственно, были коммуникабельны и не вели себя высокомерно.

После этого уже на уроке прокторам поручается курировать микрогруппу из 3–4 учеников, сидящих за соседними столами, во время выполнения ими практической работы. Если ученик правильно и самостоятельно, без вмешательства проктора выполнит операцию, то он получит за нее 1 балл, если при выполнении операции он допустит ошибку, то не получает баллов.

Заполненный лист учета сдается учителю по окончании работы и обязательно учитывается вместе с проверкой отчета в тетрадях. Если от учеников поступает жалоба на проктора, то учитель должен в ней обязательно разобраться и вынести справедливое решение. Прокторы не только контролируют работу учащихся, но и оказывают им необходимую помощь, поясняют то, что непонятно, т.е. выполняют некоторые функции учителя в своей группе.

Опыт использования данной методики на начальном этапе изучения химии показал ее высокую результативность.

Домашний эксперимент

Домашний химический эксперимент является одним из видов самостоятельной работы учащихся, имеющей большое значение как для развития интереса к химии, так и для закрепления знаний и многих практических умений и навыков. При выполнении некоторых домашних опытов ученик выступает в роли исследователя, который должен самостоятельно решать стоящие перед ним проблемы. Поэтому важна не только дидактическая ценность этого вида ученического эксперимента, но и воспитывающая, развивающая.

С первых уроков изучения химии необходимо нацелить учащихся на то, что они будут выполнять опыты не только в школе, но и дома. В домашний эксперимент включают опыты, для выполнения которых не нужны сложные установки и дорогие реактивы. Используемые реактивы должны быть безопасными и приобретаться в хозяйственных магазинах или аптеках. Однако и при использовании этих реактивов необходима консультация учителя.

Предлагаемые опыты могут носить разнообразный характер. Одни связаны с наблюдением явлений (сливание растворов соды и уксуса), другие – с разделением смеси веществ, при постановке третьих нужно объяснить наблюдаемые явления, используя свои знания по химии. Включаются и экспериментальные задачи, при выполнении которых ученики не получают от учителя готовых инструкций по технике выполнения опыта, например экспериментально доказать наличие солей в питьевой воде.

Желательно, чтобы при проведении эксперимента присутствовали старшие члены семьи ребенка.

Учителю полезно создать к каждой теме инструкции по выполнению опытов. Тогда это направление будет носить системный характер.

Не менее важным моментом в работе учащихся является составление письменных отчетов о результатах домашнего химического эксперимента. Можно рекомендовать учащимся составлять отчеты по той форме, которую они используют при выполнении практических работ.

Учитель может систематически просматривать домашние отчеты в рабочих тетрадях учащихся, а также заслушивать выступления учеников о результатах проделанной работы.

ФУНКЦИИ ХИМИЧЕСКОГО ЭКСПЕРИМЕНТА

В процессе обучения химический эксперимент выполняет различные функции 1 . Рассмотрим некоторые из них.

Эвристическая функция химического эксперимента проявляется в установлении новых
а) фактов ; б) понятий и в) закономерностей .

а) В качестве примера можно привести реакцию взаимодействия газообразного водорода с оксидом меди(II). Наблюдая данную демонстрацию, ученики устанавливают, что водород при определенных условиях может реагировать с оксидами металлов, восстанавливая металл до простого вещества.

б) Химический эксперимент обладает большими потенциальными возможностями для формирования новых понятий. Например, при изучении темы «Кислород» учитель демонстрирует способ получения кислорода из пероксида водорода. Для ускорения процесса разложения пероксида водорода в пробирку вводится диоксид марганца. После завершения реакции учитель дает определение катализатора.

в) Особенно ярко функция выявления зависимостей и закономерностей проявляется при изучении темы «Закономерности протекания химических реакций». Демонстрационный эксперимент позволяет выявить зависимость скорости химической реакции от природы реагирующих веществ, концентрации, поверхности соприкосновения реагирующих веществ и т.д.

Корректирующая функция химического эксперимента проявляется в преодолении трудностей освоения теоретического материала и исправлении ошибок учащихся. Очень часто учащиеся считают, что при взаимодействии растворов хлороводорода и серной кислоты с медью выделяется водород. Для исправления таких ошибок полезно продемонстрировать следующий опыт. В пробирки с соляной кислотой и раствором серной кислоты прибавляют кусочки меди. Учащиеся наблюдают, что при обычных условиях и при нагревании водород не выделяется.

Корректировке процесса приобретения экспериментальных умений способствуют эксперименты, которые демонстрируют последствия неправильного выполнения некоторых химических операций. Например, как проводить разбавление концентрированной серной кислоты водой. Для этого в высокий химический стакан наливают концентрированную серную кислоту. Стакан закрывают листом фильтровальной бумаги и через отверстие в бумаге приливают пипеткой горячую воду. При соприкосновении воды с кислотой происходит образование паров и разбрызгивание раствора. При приливании серной кислоты в воду и перемешивании раствора растворение протекает спокойно.

Обобщающая функция химического эксперимента позволяет выработать предпосылки для построения различных типов эмпирических обобщений. С помощью серии опытов можно сделать обобщенный вывод, например, о принадлежности различных классов веществ к электролитам.

Исследовательская функция химического эксперимента наиболее ярко проявляется в проблемном обучении. Рассмотрим этот вопрос более подробно.

ПРОБЛЕМНЫЙ ЭКСПЕРИМЕНТ

Как известно, исходным пунктом любого направленного исследования является проблема. Поиск путей решения проблемы приводит исследователя к выдвижению той или иной идеи – первоначального предположения. С момента рождения первоначального предположения и начинается процесс формирования гипотезы. Первоначальные предположения рождаются в форме догадки, т.е. интуитивно. Поиск идеи о возможном решении проблемы – процесс глубоко творческий, и единого решения здесь не существует. Тем не менее первоначальное предположение не возникает из ничего. Оно есть результат изучения исследователем новых фактических данных на основе знаний, накопленных в науке. Подкрепление идеи все новыми и новыми аргументами ведет к созданию обоснованного предположения – гипотезы.

Существует несколько путей подтверждения истинности гипотезы. Основным и наиболее распространенным способом является выведение вытекающих из нее следствий и их верификация, т.е. установление соответствия фактическим данным, согласуемости с ними. В данном случае рассуждение строится по такой схеме: если основное предположение гипотезы истинно, то в действительности должны иметь место такие-то и такие-то конкретные явления. Если данные явления будут обнаружены путем целенаправленного наблюдения, в научных экспериментах или же в практической деятельности, то гипотеза будет подтверждена. Именно таким способом подтвердилась в свое время гипотеза о существовании в растворах ионов.

Другой способ подтверждения гипотезы – непосредственное обнаружение объектов, мысль о существовании которых была основным содержанием гипотезы. Данный способ широко использовался Д.И.Менделеевым для предсказания свойств еще не открытых элементов.

И наконец, гипотеза может быть подтверждена путем дедуктивного выведения ее из другого, но уже достоверного знания – научной теории, закона. Для этого необходимо, чтобы с развитием науки был достоверно установлен такой закон, из которого данная гипотеза была бы выводима. Примером может служить открытие соединений инертных газов. До 1940-х гг. считалось, что инертные газы не способны образовывать химических соединений. Развитие теоретических представлений, оценка значений энергий связи электронов в атоме, ионизационных потенциалов и ионных радиусов позволили выдвинуть гипотезу, что электронные октеты в атомах инертных газов не являются столь уж стабильными. В 1933 г. американский ученый Л.Полинг достаточно убедительно показал принципиальную возможность образования химических соединений ксенона и криптона со фтором. Но прошло почти 30 лет, прежде чем на свет появились первые в мире соединения благородных газов Хе(РtF 6) и Kr(РtF 6).

Применение гипотез в учебном процессе не исчерпывается только реализацией принципа историзма. Большие возможности по использованию учебных гипотез заложены в организации учебного процесса. При этом сам ученик может быть поставлен в роль исследователя, генератора идей.

Большой потенциал заложен в использовании на уроке химического эксперимента. Выполнение стандартных, предусмотренных школьной программой опытов мало стимулирует творческую работу учащихся на уроках и не вполне соответствует специфике самой химической науки. Для нее характерен эксперимент, который носит исследовательский и проблемный характер. Такие эксперименты целесообразно включать в беседы эвристического характера или в процесс проблемного изложения материала.

В качестве иллюстрации можно провести проблемные опыты, разработанные Ю.В.Суриным 2 . Хорошо известно, что учащиеся часто допускают ошибки в написании уравнений реакций металлов с азотной кислотой, считая допустимым выделение водорода. Эту ошибку можно предотвратить, проведя эксперимент, включенный в беседу проблемного характера. Приступая к изучению вопроса о взаимодействии металлов с азотной кислотой, учитель сначала предлагает учащимся высказать предположение о возможных продуктах такого взаимодействия.

Учащиеся часто считают, что металлы выделяют водород не только из растворов хлороводородной и серной кислот, но и из азотной кислоты. Для создания проблемной ситуации учитель предлагает провести исследовательский эксперимент и дать объяснение результатов опыта.

В пробирку с соляной кислотой помещают несколько гранул цинка. После того как начинается реакция с выделением водорода, добавляют 1–2 капли концентрированной азотной кислоты. Учащиеся наблюдают, что выделение водорода практически прекращается, но через некоторое время возобновляется. Такой результат опыта кажется учащимся непонятным и ставит их в тупик. Эксперимент заставляет задуматься над рядом вопросов:

1. В чем причина наблюдаемого явления?

2. Почему добавление азотной кислоты влияет на выделение водорода из раствора соляной кислоты?

3. Почему через определенное время выделение водорода возобновляется?

Учащиеся выдвигают предположения, объясняющие этот необычный факт. К решению проблемы они вполне подготовлены, т.к. имеют достаточный запас знаний о свойствах кислот, знакомы с составлением уравнений окислительно-восстановительных реакций. Выдвигается рабочая гипотеза: водород, выделяющийся из соляной кислоты, затрачивается на восстановление азотной кислоты. Данной гипотезе учащиеся могут дать обоснование, актуализировав свои знания о восстановительных свойствах водорода. Вспомнив, что водород в момент выделения является очень сильным восстановителем, а азотная кислота – окислитель, учащиеся записывают уравнение реакции восстановления азотной кислоты:

HNO 3 + 8H = NH 3 + 3H 2 O.

NH 3 + HCl = NH 4 Cl.

То, что это действительно так, учащиеся могут доказать, проведя исследование раствора на содержание иона аммония. Полученный в ходе исследовательского эксперимента вывод ученики могут использовать для правильной записи уравнения реакции цинка с сильно разбавленной азотной кислотой:

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O.

Теперь учащиеся смогут ответить на все вопросы, поставленные при выделении рабочей гипотезы. Водород не выделяется из азотной кислоты и растворов других кислот в присутствии азотной кислоты потому, что расходуется на восстановление азотной кислоты. Возобновляется же выделение водорода в данном опыте потому, что происходит восстановление всей азотной кислоты.

Ученик выступает в роли исследователя и при решении экспериментальных задач. Так, при исследовании свойств веществ схема исследования может быть следующей:

актуализация знаний;

постановка целей исследования;

проведение теоретического анализа;

построение гипотезы;

составление плана экспериментальной проверки гипотезы;

выполнение эксперимента;

обсуждение результатов и формулировка выводов.

Эксперимент – важнейший путь осуществления связи теории с практикой при обучении химии, путь превращения знаний в убеждения. Химический эксперимент, применяемый в школьной практике, обычно не противоречит существующим закономерностям и служит подтверждением определенных теоретических положений. Однако результаты некоторых химических опытов являются неожиданными и не вписываются в традиционные представления о свойствах веществ или закономерностях протекания химических реакций. Например, возможна ли химическая реакция между бромоводородной кислотой и металлом, стоящим в электрохимическом ряду напряжений металлов после водорода? Или: может ли слабая кислота вытеснить более сильную кислоту из ее соли? Ответ кажется однозначным – нет. Тем не менее такие примеры существуют и имеют научное подтверждение. Подобные опыты – благодатная почва для введения в учебный процесс проблемного обучения, формирования диалектического и системного мышления школьника.

Приведем описание нескольких примеров таких парадоксальных опытов.

Растворение меди в бромоводородной кислоте

Реактивы. Свежеосажденная медь, крепкий раствор бромоводородной кислоты.

Проведение опыта . В пробирку с небольшим количеством свежеосажденной меди приливают
3–5 мл бромоводородной кислоты и осторожно нагревают на пламени спиртовки. Начинается энергичное взаимодействие меди с кислотой. Выделяющийся водород собирают в небольшую пробирку или непосредственно поджигают у отверстия пробирки. Водород горит зеленоватым пламенем.

Получение свежеосажденной меди. В фарфоровую чашку наливают насыщенный раствор сульфата меди(II) и вносят гранулы цинка. Выделяющаяся медь осаждается на цинке в виде рыхлой массы. При перемешивании раствора осадок оседает на дне чашки. Осадок промывают, вынимают гранулы непрореагировавшего цинка; полученную медь, не высушивая, используют для опыта.

Объяснение опыта . Взаимодействие меди с бромоводородной кислотой можно объяснить тем, что в результате реакции образуется комплексное соединение Н:

4HBr + 2Cu = 2H + H 2 .

Комплексный ион – достаточно прочный, вследствие чего концентрация ионов меди Cu + в растворе оказывается ничтожно малой, электродный потенциал меди становится отрицательным и происходит выделение водорода.

Аналогичный опыт можно провести с серебром и йодистоводородной кислотой. С порошком серебра реакция идет очень бурно. Образующийся йодид серебра практически нерастворим в воде (произведение растворимости ПР(AgI) = 8,3 10 –17). Поэтому в данном случае концентрация ионов серебра в растворе ничтожна, и потенциал серебра становится отрицательным.

Слабая кислота вытесняет сильную из ее соли

Реактивы. Борная кислота, хлорид натрия, универсальная индикаторная или синяя лакмусовая бумага.

Проведение опыта. В пробирку помещают тонко измельченную смесь, состоящую из 1 г хлорида натрия и 3 г борной кислоты. Закрепляют пробирку в лапке пробиркодержателя и нагревают на пламени спиртовки. Через некоторое время у отверстия пробирки появляется белый дым. Подносят к отверстию пробирки универсальную индикаторную бумагу, смоченную водой, наблюдается покраснение бумаги. При проведении опыта учителю необходимо отметить нелетучесть борной кислоты.

Объяснение опыта . При нагревании смеси протекает следующая реакция:

2NaCl + 4H 3 BO 3 = Na 2 B 4 O 7 + 5H 2 O + 2HCl.

В растворе реакция протекала бы в обратную сторону – соляная кислота вытеснила бы борную из ее соли. При нагревании же происходит смещение равновесия в сторону образования летучих продуктов – хлороводорода и водяных паров. При этом также образуется устойчивый к нагреванию тетраборат натрия. Возможность протекания данного химического процесса можно подтвердить и термодинамическими расчетами.

Н /S = 486,6/1 = 486,6 К, или 213,6 °С.

Данная химическая реакция протекает при сравнительно небольшом нагревании.

Растворение меди в растворе хлорида железа(III)

Реактивы. Свежеосажденная медь, 10%-й раствор хлорида железа(III).

Проведение опыта . В пробирку помещают немного свежеосажденной меди и приливают раствор хлорида железа(III). В течение минуты происходит растворение меди, и раствор окрашивается в зеленый цвет. Для увеличения скорости реакции раствор можно немного подогреть. При использовании медных опилок, стружек или медной проволоки реакция идет слишком медленно.

Объяснение опыта. Данная химическая реакция используется в радиотехнике для травления плат. При этом протекает процесс, описываемый следующим химическим процессом:

Cu + FeCl 3 = CuCl 2 + FeCl 2 .

Реакция является окислительно-восстановительной. Ион железа Fe 3+ – окислитель, атом меди – восстановитель. Мерой окислительно-восстановительной способности веществ служат их окислительно-восстановительные потенциалы. Чем больше алгебраическая величина стандартного окислительно-восстановительного потенциала данного атома или иона, тем больше его окислительные свойства, а чем меньше алгебраическое значение окислительно-восстановительного потенциала атома или иона, тем больше его восстановительные свойства.

Для определения направления окислительно-восстановительной реакции необходимо найти ЭДС элемента, образованного из данного окислителя и восстановителя. ЭДС (Е ) окислительно-восстановительного элемента равна:

Е = Е (ок-ля) – Е (вос-ля).

Если Е > 0, то данная реакция возможна. Окислительно-восстановительные потенциалы пар Е 0 (Fe 3+ /Fe 2+) = 0,771 В, Е 0 (Cu 2+ /Cu 0) = 0,338 В. Найдем электродвижущую силу реакции:

ЭДС = 0,771 – 0,338 = 0,433 В.

Положительное значение ЭДС подтверждает возможность протекания данной реакции в стандартных условиях.

Растворение меди в растворе аммиака

Реактивы. 15–25%-й раствор аммиака, свежеосажденная медь.

Проведение опыта. В колбу объемом 250–300 мл помещают несколько крупинок свежеосажденной меди и приливают 15–20 мл крепкого раствора аммиака. Колбу закрывают пробкой и сильно встряхивают в течение нескольких секунд. Раствор приобретает голубую окраску.

Объяснение опыта. Растворение меди в растворе аммиака можно объяснить тем, что при окислении меди кислородом воздуха в присутствии аммиака образуется устойчивый комплексный ион, который и определяет направление химической реакции:

2Cu + 8NH 3 + O 2 + 2H 2 O = 2 2+ + 4OH – .

Поскольку реакция является окислительно-восстановительной, можно рассчитать ее ЭДС:

Cu + 4NH 3 – 2e = 2+ , Е 0 = –0,07 В,

O 2 + 2H 2 O + 4е = 4OH – , Е 0 = 0,401 В,

ЭДС = 0,401 – (–0,07) = 0,408 В.

Положительное значение ЭДС, как и в предыдущем опыте, свидетельствует о возможности ее протекания.

Учебный химический эксперимент относится к числу методов обучения, специфика которого заключается в отражении неотъемлемой компоненты науки. Важнейшая особенность химического эксперимента как средства познания состоит в том, что в процессе наблюдения и при самостоятельном выполнении опытов учащиеся не только общаются с конкретными объектами химической науки, но могут видеть и осуществлять процессы качественного изменения веществ. Тем самым учащиеся познают многообразную природу веществ, накапливают факты для сравнений, обобщений, выводов, убеждаются в возможности управления сложными химическими процессами.

Вопросы и задания для самостоятельной работы

1. Какие функции выполняет эксперимент в учебном процессе?

Ответ . Эвристическую, корректирующую, обобщающую и исследовательскую.

2. Какие пути подтверждения гипотезы вам известны?

Ответ . Выведение вытекающих из нее следствий и их верификация, непосредственное обнаружение объектов, дедуктивное выведение из научной теории или закона.

3. В чем заключается основной дидактический недостаток лабораторных опытов?

Ответ . В невозможности полноценного формирования экспериментальных химических умений учащихся.

4. Какие критерии отбора демонстрационного эксперимента к уроку вы используете в своей практике?

(Возможны различные варианты ответа на данный вопрос. Здесь проявляется творческий подход учителя к постановке химического эксперимента.)

1 Злотников Э.Г . О содержании понятия «учебный химический эксперимент» в системе интенсивного обучения. В кн.: Совершенствование содержания и методов обучения химии в средней школе.
Л.: ЛГПИ им. А.И.Герцена, 1990.

2 Сурин Ю.В . Методика проведения проблемных опытов по химии. Развивающий эксперимент.
М.: Школа-Пресс, 1998.

Химический эксперимент
как специфический метод обучения

X имический эксперимент придает особую специфику предмету химии. Он является важнейшим способом осуществления связи теории с практикой путем превращения знаний в убеждения.

В методической литературе можно встретить много различных формулировок понятия химического эксперимента, используемого для обучения: «школьный химический эксперимент», «ученический эксперимент по химии» и др. В качестве центрального в этом многообразии понятий можно выделить понятие «учебный химический эксперимент».

В учебном химическом эксперименте наиболее общими являются следующие компоненты:

1) изучение химических объектов (веществ и химических реакций), рассчитанное на одновременное восприятие всеми обучаемыми;

2) постановка целей и задач эксперимента;

3) экспериментальная деятельность самих обучаемых;

4) освоение техники химического эксперимента.

На основе этих общих компонентов понятие учебный химический эксперимент можно представить как специальным образом организованный фрагмент процесса обучения, направленный на познание объектов химии и развитие экспериментальной деятельности обучаемых.

В школьном курсе химии эксперимент является не только методом исследования, источником и средством нового знания, но и своеобразным объектом изучения.

Химический эксперимент выполняет важнейшие функции: образование, воспитание (нравственное, духовное, трудовое, эстетическое, экономическое и др.) и развитие (в том числе памяти, мышления, эмоций, воли, мотивов и др.).

Химический эксперимент выполняет и некоторые частные функции – информативную, эвристическую, критериальную, корректирующую, исследовательскую, обобщающую и мировоззренческую.

1. Информативная функция проявляется в тех случаях, когда химический эксперимент служит первоначальным источником познания предметов и явлений. С помощью эксперимента обучаемые узнают о свойствах и превращениях веществ. В этих случаях явления рассматриваются такими, какие они есть в реальной обстановке. Будучи включенным в активную познавательную деятельность, обучаемый в состоянии проникнуть в суть химического явления, освоить его на эмпирическом уровне и использовать усвоенный материал в качестве способа дальнейшего познания.

2. Эвристическая функция обеспечивает не только установление фактов, но и служит активным средством формирования многих эмпирических понятий, выводов, зависимостей и закономерностей в химии.

Простейший пример, когда на основе опыта устанавливается факт: ученик, добавляя к раствору индикатора (фенолфталеина) несколько капель раствора гидроксида натрия, убеждается в том, что данный индикатор под действием щелочи изменяет свою окраску.

Чаще всего установить факт намного сложнее. Например, опустив кусочек цинка в раствор соляной кислоты, ученик выясняет: во-первых, что цинк реагирует с раствором соляной кислоты; во-вторых, что в результате этой реакции выделяется газ; а при выпаривании капельки раствора на стекле ученик устанавливает, в-третьих, что в результате этой реакции образовалось новое вещество – хлорид цинка.

В учебной деятельности химический эксперимент не только позволяет устанавливать факты, но и служит активным средством формирования многих химических понятий. Например, первоначальное формирование понятия «катализатор» базируется на простом химическом опыте разложения пероксида водорода в присутствии оксида марганца(IV):

В пробирку с 2 мл 10%-го раствора пероксида водорода опускают пять гранул оксида марганца(IV). Начинается интенсивное выделение кислорода, наличие которого проверяют с помощью тлеющей лучинки. Как только тлеющая лучинка перестает воспламеняться, осторожно сливают жидкость из пробирки и вновь добавляют в нее
2 мл исходного раствора пероксида водорода. Снова доказывают наличие кислорода. Опыт повторяют три раза.

На основании наблюдений учащиеся приходят к выводу, что оксид марганца(IV) в ходе реакции не расходуется. Затем они самостоятельно формулируют определение понятия «катализатор» – вещество, которое изменяет скорость химической реакции, но не расходуется при ее осуществлении.

Химический эксперимент также позволяет выводить зависимости и закономерности. Например, при изучении скорости химической реакции необходимо так организовать учебный процесс, чтобы учащиеся сами установили зависимость скорости реакции от концентрации реагирующих веществ. С этой целью им можно предложить провести взаимодействие раствора йодида калия с раствором пероксида водорода в присутствии крахмала.

В три пробирки, содержащие раствор йодида калия с крахмалом, наливают раствор пероксида водорода: в первую пробирку с исходной концентрацией (3%), во вторую – разбавленный в два раза и в третью – разбавленный в четыре раза. С помощью часов или метронома фиксируют, что во второй пробирке реакция протекает в два раза медленнее, чем в первой, а в третьей – в четыре раза.

На основании проделанного опыта учащиеся приходят к выводу, что скорость реакции прямо пропорциональна концентрации реагирующих веществ. Полученный из эксперимента вывод можно оформить графически в координатах «время – концентрация». Такой путь: от эксперимента к графику, а от него к уравнению – пример высшего проявления эвристического вывода. Он возможен при высоком уровне самостоятельности и творческой активности учащихся.

Все вышеприведенные примеры показывают, что эксперимент можно использовать для организации прямых эвристических выводов.

3. Критериальная функция проявляется в том случае, когда результаты опытов подтверждают предположения (гипотезы) обучаемых, т.е. служат той «практикой, что является критерием истины». Это необходимое средство практического доказательства правильности или ошибочности предположительных суждений, выводов, а также подтверждения ряда известных положений.

Химический эксперимент является средством сопоставления суждений с субъективным отражением внешнего мира, полученным посредством чувств. Поэтому он может восприниматься как средство проверки человеческих знаний о внешнем мире. В процессе обучения химии желательно каждое теоретическое суждение проверять на «истинность» с помощью эксперимента.

Например, когда ученики узнали, что вода состоит из водорода и кислорода, то им следует разъяснить, что это единственные составные части воды. В этом случае целесообразно поставить опыт по получению воды из кислорода и водорода: результаты опыта явятся доказательством того, что вода состоит только из этих элементов. Однако учащиеся должны понимать, что эксперимент не является абсолютным средством проверки истины. Приведенный опыт доказывает качественный состав воды, но он еще не говорит о ее количественном составе. Для того чтобы сделать определенные суждения о формуле воды, должны быть проведены новые эксперименты.

Часто эксперимент рассматривается как средство опровержения или подтверждения выдвинутой гипотезы. Например, при изучении бензола, обсуждая его молекулярную формулу, учащиеся относят бензол к непредельным углеводородам. Учитель предлагает проверить на опыте, взаимодействует ли бензол с бромной водой. Опыт не подтверждает выдвинутого предположения: бензол не вызывает характерного для непредельных углеводородов обесцвечивания бромной воды. Из неудачи в эксперименте ученики делают вывод, что при теоретических обсуждениях необходимо делать ориентировку на практику.

4. Корректирующая функция позволяет преодолевать трудности в освоении теоретических знаний: уточнять имеющиеся знания в процессе приобретения экспериментальных умений и навыков, исправлять ошибки обучаемых, осуществлять контроль за приобретенными знаниями.

Изучение количественных отношений в химии без химического эксперимента вызывает трудности в освоении таких понятий, как «моль», «молярная масса», «молярный объем», «относительная плотность газов», а также в понимании количественных закономерностей, составляющих сущность стехиометрических законов. Эти трудности в перспективе могут быть преодолены путем разработки специальных количественных экспериментов и количественных экспериментальных задач, которые, к сожалению, не предусмотрены существующими программами по химии полной средней общеобразовательной школы.

Ученические опыты можно использовать для формирования правильных суждений учащихся и исправления ошибочных. Например, изучая свойства кислотных оксидов, учащиеся на уроке узнают из эксперимента, что оксид углерода(IV) и оксид серы(IV) взаимодействуют с водой. Такое взаимодействие учащиеся доказывают с помощью лакмуса. Но если ограничиться только этими опытами, то у учащихся может возникнуть ряд ошибочных представлений, связанных с неправильным переносом знаний. Так, например, большинство учащихся пишут уравнение реакции не существующего в природе процесса взаимодействия оксида кремния(IV) с водой. Для исправления этой ошибки необходимо, чтобы учащиеся провели опыт и сами убедились с помощью раствора лакмуса, что данные вещества не взаимодействуют между собой. Такие опыты помогут учащимся преодолеть типичные ошибки.

В практической деятельности учащихся также велика вероятность ошибок, связанных с нарушением правил техники безопасности. При получении хлороводорода и соляной кислоты учащиеся нередко опускают газоотводную трубку прибора в воду, забывая о том, что хлороводород хорошо растворяется в воде. Даже предупредительные слова учителя и инструкция учебника не оказывают должного воздействия. В подобной ситуации необходим специальный корректирующий эксперимент, демонстрирующий возможные последствия при неправильном проведении реакции. Учитель умышленно делает экспериментальную ошибку и тем самым показывает, как не следует ставить данный опыт. Видя результаты неправильного обращения с прибором, учащийся в своей практической работе уже не допустит подобной ошибки.

5. Исследовательская функция связана с развитием практических умений и навыков по анализу и синтезу веществ, поиску знаний о свойствах веществ и исследованию их простейших признаков, конструированию приборов и установок, т.е. освоению простейших методов научно-исследовательской работы. В соответствии с этой функцией учебный химический эксперимент как бы соединяет применение основных приемов научного метода с выполнением учащимися учебно-исследовательских заданий.

Наиболее распространенными и доступными исследованиями являются практические работы по качественному анализу веществ. Экспериментальные исследовательские работы ценны в творческом отношении и дают возможность обучаемым самим создавать опытные установки для исследования веществ. В ходе таких работ не только изучаются вещества, но и осваиваются различные экспериментальные методы, применяемые в химии.

Однако в химии важны не только качественные, но и количественные показатели. Ученический эксперимент, связанный с измерением количественных характеристик, практически не используется на уроках и очень редко применяется на факультативных и внеурочных занятиях по химии. Вместе с тем систематическое выполнение количественных экспериментальных задач приучает учащихся аккуратно работать, критически подходить к делу, вырабатывает навыки точной количественной оценки результатов эксперимента и существенно изменяет характер поисковой познавательной деятельности.

Первоначально учащиеся начинают решать количественные экспериментальные задачи на образцах искусственных смесей (например, определение содержания карбонатов в выданном образце щелочи). Затем характер задач усложняется и приближается к жизненным условиям (например, определение кислотности пищевых продуктов: хлеба, молока, ягод, фруктов и т.д.). Особый интерес представляют количественные экспериментальные задачи по синтезу веществ (например, получение индикатора метилоранжа и других препаратов, необходимых для школьного химического эксперимента). Они имеют ценность и в творческом, и в эмоциональном аспектах: синтезированный препарат сохраняется и используется затем в других экспериментах. Выполняя эти работы, учащиеся не только изучают вещества, но и осваивают экспериментальные методы, применяемые в химии (взвешивание, титрование, экстракция, хроматография, анализ, синтез и т.д.).

6. Обобщающая функция учебного химического эксперимента создает условия для выработки предпосылок при построении различных типов эмпирических обобщений. С помощью серии учебных экспериментов можно сделать обобщенный вывод.

Например, наблюдение опытов по электропроводности водных растворов кислот, щелочей и солей приводит учащихся к обобщению: несмотря на различную природу этих веществ, их растворы обладают одним свойством – все они могут проводить электрический ток. Полученные в опытах отдельные экспериментальные факты могут быть интерпретированы в общий вывод, на основании которого дается определение понятия «электролит».

В преподавании химии часто возникают такие ситуации, при которых обобщение, сделанное на основе эксперимента, дополняется и уточняется с помощью теории.

При формировании обобщенного понятия «реакция замещения» для создания эмпирической базы необходимо провести как минимум три опыта: взаимодействие растворов хлорида меди(II) с цинком, сульфата меди(II) с железом, нитрата серебра с медью. Если указанные металлы взять в виде порошков, то учащиеся, наблюдая опыты, могут сделать обобщенный вывод: в этих опытах было взято по два исходных вещества (простое и сложное) и получилось два новых (простое и сложное). Однако этот эмпирический вывод недостаточен для обобщенного определения реакции замещения. Привлекая знания атомно-молекулярной теории, учитель объясняет механизм этой реакции и дает следующее определение: «Химические реакции между простым и сложным веществами, при которых атомы, составляющие простое вещество, замещают атомы одного из элементов сложного вещества, называются реакциями замещения».

В обобщении на базе эксперимента важно не только передавать определенную сумму знаний, но и формировать единые правила работы в лаборатории.

В государственном образовательном стандарте по химии для полной средней общеобразовательной школы в требованиях к уровню подготовки выпускников перечислены основные экспериментальные умения. Большинство из этих умений являются обобщенными: обращаться с простейшим лабораторным оборудованием, растворять твердые вещества, проводить отстаивание, фильтрование, обращаться с кислотами и щелочами, готовить растворы с определенной массовой долей растворенного вещества, собирать из готовых деталей приборы, определять с помощью характерных реакций неорганические и органические вещества, в том числе и полимерные материалы. При формировании экспериментальных умений необходимо постоянно обращать внимание учащихся на то, как следует правильно проводить тот или иной эксперимент с точки зрения техники безопасности.

7. Мировоззренческая функция определяется дидактической ролью учебного химического эксперимента в научном химическом познании. Эксперимент является составной частью в цепи диалектического процесса познания учащимися объективной действительности. Правильно поставленный учебный химический эксперимент – важнейшее средство формирования научного мировоззрения учащихся в процессе усвоения основ химической науки.

Все перечисленные функции учебного химического эксперимента взаимосвязаны и взаимообуславливают друг друга. От возможности выполнения этих функций зависят успех и эффективность проводимого учебного химического эксперимента.

Химический эксперимент относится к специфическим методам обучения, что обусловлено особенностью предмета – химии, при изучении которого нельзя упускать наглядность. Эксперимент позволяет не только как можно подробнее понять, что же происходит в конкретной химической реакции, но и помогает повысить интерес учащихся к предмету химии.

В ыполнять эксперимент возможно лишь с опорой на полученные ранее знания. Теоретическое обоснование опыта способствует его восприятию (которое становится более целенаправленным и активным) и осмыслению его сущности. Проведение эксперимента обычно связано с выдвижением гипотезы.

Формулирование гипотезы учащимися развивает их мышление, заставляет применять имеющиеся знания и в результате проверки гипотезы получать новые знания. Химический эксперимент открывает большие возможности также и для создания и последующего разрешения проблемных ситуаций.

Эксперимент должен стать необходимой частью урока при изучении конкретных вопросов. Ученики должны знать, для чего проводится эксперимент, какое теоретическое положение он подтверждает, на какой вопрос поможет ответить.

Различают следующие типы школьного химического эксперимента:

Демонстрационный эксперимент;

Лабораторные опыты;

Лабораторные работы;

Практические работы;

Экспериментальный (лабораторный) практикум;

Домашний эксперимент.

Демонстрационный эксперимент – это химический эксперимент, проводимый преподавателем (в редких случаях подготовленным учеником).

Основные задачи демонстрационного эксперимента: раскрытие сущности химических явлений; показ учащимся лабораторного оборудования (приборов, установок, аппаратов, химической посуды, реактивов, материалов, приспособлений); раскрытие приемов экспериментальной работы и правил безопасности труда в химических лабораториях.

Требования к демонстрационному эксперименту впервые были сформулированы В.Н.Верховским и развиты К.Я.Парменовым, А.Д.Смирновым, В.П.Гаркуновым, М.С.Пак и др.

В процессе демонстрационного эксперимента необходимо реализовать следующие требования:

1) обозреваемость (обеспечение хорошей видимости всем учащимся);

2) наглядность (обеспечение правильного восприятия учащимися);

3) безукоризненная техника выполнения;

4) безопасность для учащихся и учителя;

5) оптимальность методики эксперимента (сочетание техники эксперимента и слов учителя);

6) надежность (без срывов);

7) выразительность (раскрытие сущности объекта при минимальной затрате усилий и средств);

8) эмоциональность;

9) убедительность (однозначность объяснения, достоверность результатов);

10) кратковременность;

11) эстетичность оформления;

12) простота техники выполнения;

13) доступность для понимания;

14) предварительная подготовка эксперимента;

15) репетиция методики эксперимента.

Лабораторные опыты – это эксперимент, который выполняют учащиеся под непосредственным руководством учителя. Лабораторные опыты являются, как правило, единичными и помогают изучить отдельные стороны химического объекта.

Лабораторные работы представляют собой совокупность лабораторных опытов и позволяют изучить многие стороны химических объектов и процессов. Лабораторные работы заключаются в проведении учащимися по заданию учителя опытов с использованием приборов, инструментов и прочего оборудования. По времени они могут занимать от 5–10 до 40–45 мин (лабораторный урок). На лабораторном уроке учащиеся работают в основном не по заданиям и не по книге, а на основании живого слова преподавателя.

Практические работы являются одним из видов экспериментальной учебной деятельности школьников. Практические занятия отличаются более высокой степенью самостоятельности учащихся и способствуют совершенствованию их знаний и умений.

Экспериментальный практикум вид самостоятельной работы учащихся, проводимой в основном в старших классах. Экспериментальный практикум обычно организуется при завершении крупных разделов курса и имеет преимущественно повторительно-обобщающий характер. Такой практикум способствует формированию обобщенных знаний и умений.

Домашний эксперимент – это опыты, выполняемые учащимися в домашних условиях и способствующие удовлетворению познавательных интересов и потребностей учащихся, а также развитию опыта их творческой деятельности.

С целью профессиональной подготовки к образовательной практике молодые учителя должны целенаправленно осваивать технику и методику школьного химического эксперимента.

Э ффективность обучения химии тесно связана с общим планированием учебного материала. Основные задачи, которые решаются в процессе планирования, – это оптимизация учебного процесса, определение объема учебного материала, подбор заданий на урок и на дом, выделение времени на проведение лабораторных опытов и практических занятий, решение экспериментальных и расчетных задач, контроль знаний, умений и навыков учащихся, закрепление и повторение материала.

Преподаватель химии должен уметь планировать эксперимент и по всей теме, и для конкретного урока, методически правильно его применять, отбирать наиболее подходящие для каждого конкретного случая варианты опытов, руководить познавательной деятельностью учащихся, анализировать, оценивать свою деятельность при проведении демонстраций, а также деятельность учащихся при выполнении ими самостоятельно экспериментальной работы.

Планирование химического эксперимента: в начале учебного года в соответствии с учебной программой устанавливается последовательность проведения демонстраций, лабораторных опытов, практических занятий и решения экспериментальных задач по темам и их связь с теоретическими занятиями; определяется перечень экспериментальных умений и навыков, которые должны приобрести учащиеся, и дидактические средства, позволяющие достичь поставленных целей. Зная предварительно сроки проведения эксперимента, преподаватель имеет возможность заблаговременно подготовить к урокам оборудование, учебные пособия и др.

Подготовка к уроку зависит от типа урока и поставленной дидактической цели. Вначале преподаватель уточняет учебно-воспитательные задачи урока и продумывает методику его проведения. Чтобы химический эксперимент обеспечивал прочные и глубокие знания, необходимо предусмотреть, какие экспериментальные умения и навыки будут приобретены учащимися, с помощью каких приемов можно добиться понимания ими наблюдаемых химических превращений. Преподавателю рекомендуется просмотреть соответствующую методическую литературу, наметить вопросы, выявляющие теоретические знания учащихся по теме, выделить моменты, способствующие приобретению умений, навыков, а также облегчающие восприятие учебного материала в дальнейшем, и сосредоточить на них внимание.

Преподавателю необходимо продумать, на каком этапе урока, в какой последовательности, с какими реактивами и приборами провести опыты, определить их место во время занятия в зависимости от поставленных задач, а также форму записи полученных результатов (рисунок, таблица, уравнение реакции и т.д.).

Очень важно перед уроком отрепетировать технику выполнения каждого демонстрационного опыта, проверить наличие и качество реактивов, а также убедиться в наглядности работы прибора и происходящих явлений, т.к. неполадки, обнаруженные в процессе проведения урока, ухудшают дисциплину учащихся и препятствуют достижению поставленной цели. При необходимости следует заменять реактивы, исправлять приборы либо подбирать заранее другую подходящую аппаратуру.

П рочность и осознанность знаний по химии возрастают, если химический эксперимент осуществляют сами ученики. Для его проведения необходимо овладеть целым рядом умений и навыков , отсутствие которых мешает учащимся сосредоточить внимание на сущности происходящих химических явлений, т.к. им приходится больше заниматься техникой проведения опытов.

Овладение экспериментальными умениями и навыками необходимо не только для успешного усвоения содержания курса химии, но и при продолжении образования в вузах и для будущей производственной деятельности. Наиболее важны следующие умения и навыки:

Обращение с посудой, приборами, реактивами;

Проведение таких операций, как нагревание, растворение, собирание газов и др.;

Наблюдение химических явлений и процессов и правильное объяснение их сущности;

Составление письменного отчета о проделанной работе;

Пользование справочной литературой.

Чтобы управлять процессом совершенствования и развития умений и навыков учащихся, преподаватель должен сам четко представлять путь и методику их формирования. Для этого ему необходимо постоянно и внимательно знакомиться с программой по химии. В ней есть перечень практических умений и навыков, которые учащиеся должны приобретать по мере изучения курса химии. Проверять уровень владения практическими умениями и навыками нужно начинать сразу после первых практических занятий. Например, после знакомства учащихся с лабораторным оборудованием преподаватель на следующих уроках проверяет, как они усвоили соответствующие умения.

Наиболее эффективно умения и навыки формируются при соблюдении следующих условий:

Сочетание наглядного показа опыта с устным комментированием хода его выполнения;

Объяснение сущности явлений, происходящих при выполнении опыта;

Уточнение необходимости эксперимента и предупреждение возможных ошибок;

Контроль со стороны преподавателя и оказание дифференцированной помощи учащимся.

Большое значение в совершенствовании и закреплении умений и навыков имеет индивидуальное выполнение опытов учащимися. При самостоятельном выполнении опытов, в которых встречаются уже известные ученикам приемы и операции, они быстрее и прочнее закрепляются и совершенствуются.

При наблюдении за учениками следует обращать внимание на:

Их умение пользоваться реактивами, посудой и другим оборудованием;

Их работу с приборами (сборка, проверка на герметичность, закрепление в штативе, использование в опытах);

Выполнение ими различных операций (наливание и насыпание веществ, растворение твердых, жидких и газообразных веществ, измельчение и смешивание твердых веществ, собирание газов и др.);

Распознавание ими веществ по физическим свойствам, характеру горения и качественным реакциям.

Наряду с этим необходимо проверять: понимают ли учащиеся цель опыта, умеют ли составлять план проведения эксперимента, знают ли, какие вещества и приборы нужно использовать, при каких условиях будет протекать данный химический процесс и как выразить его соответствующими уравнениями реакций, умеют ли анализировать опыты, делать обобщения и выводы.

Важно также осуществлять контроль за соблюдением учениками техники безопасности при обращении с реактивами, нагревательными приборами, химической посудой, а также за чистотой рабочего места, бережным отношением к оборудованию и экономным расходованием реактивов, за рациональным использованием времени на проведение отдельных приемов и операций, за дисциплиной.

Эффективность обучения химии с использованием эксперимента зависит от наличия постоянных обратных связей. Учет экспериментальных умений и навыков – это итог работы не только учащихся, но и преподавателя.

Химический эксперимент – важный источник знаний. В сочетании с техническими средствами обучения он способствует более эффективному овладению знаниями, умениями и навыками. Систематическое использование на уроках химии эксперимента помогает развивать умения наблюдать явления и объяснять их сущность в свете изученных теорий и законов, формирует и совершенствует экспериментальные умения и навыки, прививает навыки планирования своей работы и осуществления самоконтроля, воспитывает аккуратность, уважение и любовь к труду. Химический эксперимент способствует общему воспитанию и всестороннему развитию личности.

Л и т е р а т у р а

Вайнштейн Б.М. и др. Практические занятия по химии. М., 1939;
Парменов К.Я. Демонстрационный химический эксперимент. М., 1954;
Парменов К.Я. Химический эксперимент в средней школе. М., 1959;
Верховский В.Н., Смирнов А.Д. Техника химического эксперимента. Т. 1. М., 1973;
Гаркунов В.П. Совершенствование методов обучения химии в средней школе. Л., 1974;
Вивюрский В.Я . Эксперимент по химии в средних профтехучилищах. М., 1980;
Назарова Т.С., Грабецкий А.А., Лаврова В.Н. Химический эксперимент в школе (Библиотека учителя химии). М., 1987;
Злотников Э.Г. Химический эксперимент в условиях развивающего обучения. Химия в школе, 2001, № 1;
Пак М.С. Дидактика химии. М.: Владос, 2004.

Выделяют следующие типы школьного химического эксперимента: демонстрационный опыт, лабораторный опыт, лабораторная работа, практическая работа, лабораторный практикум и домашний эксперимент.

По характеру воздействия на мышление учащихся, методики организации школьный химический эксперимент может осуществляться в исследовательской и иллюстративной форме.

Иллюстративный метод называют иногда методом готовых знаний: учитель сначала сообщает то, что должно получиться в результате опыта, а затем иллюстрирует сказанное демонстрацией, или изучаемый материал подтверждается проведением лабораторного опыта.

Исследовательским называют метод, в результате которого учащимся предлагается подобрать реактивы и оборудование для проведения опыта, спрогнозировать результат, выделить главное в наблюдениях и самостоятельно сделать вывод. Учитель проводит опыт как бы под руководством учащихся, выполняя предложенные экспериментальные действия, комментирует правила безопасности проведения эксперимента, задает уточняющие вопросы.

На первом этапе изучения химии, иллюстративный метод проведения демонстрационных опытов оказывается более эффективным, чем исследовательский. В этом случае учащиеся испытывают меньше затруднений при последующем описании наблюдений, формулировании выводов. Однако использование иллюстративного метода не должно ограничиваться только грамотным комментарием учителя. Более прочными у учащихся будут знания, полученные в результате эвристической беседы, построенной учителем в ходе демонстрации. По мере роста готовности школьников к самостоятельному наблюдению в процессе изучения химии возможно увеличение доли исследовательского метода при проведении демонстраций. Правильный выбор формы организации эксперимента является показателем педагогического мастерства учителя .

Школьный химический эксперимент можно разделить на демонстрационный, когда эксперимент показывает учитель, и ученический, выполняемый учащимися .

Наиболее распространенным и сложным в преподавании является проведение демонстрационных опытов, в которых наблюдаются предметы и процессы .

Демонстрационным называют эксперимент, который проводит в классе учитель, лаборант или иногда один из учащихся. Этот эксперимент учитель использует в начале курса с целью научить учащихся наблюдать за процессами, приемами работы, манипуляциями. Это вызывает у учащихся интерес к предмету, начинает формировать у них практические умения, знакомит с химической посудой, приборами, веществами и т.д. Затем демонстрационный эксперимент применяют тогда, когда он слишком сложен для самостоятельного выполнения учащимися .

В школе используют демонстрационный эксперимент двух типов:

Демонстрации, когда объекты демонстраций ученик наблюдает непосредственно. В этом случае показывают вещества и проводят с ними различные химические операции, например, нагревание, сжигание, или демонстрируют опыты в сосудах большого размера - стаканах, колбах и др.

2. Опосредованные демонстрации используются в тех случаях, когда происходящие процессы мало заметны или слабо воспринимаются органами чувств. В этих случаях химические процессы воспроизводятся с помощью различных приспособлений. Так, плохо видимые химические реакции проецируют на экран, используя графопроектор, процессы электролитической диссоциации обнаруживают при помощи пробников, плотность растворов определяют при помощи ареометров.

Следует умело использовать эти два вида демонстраций, не преувеличивать значения одного из них, например нельзя все опыты показывать только проецированием на экран, так как в этом случае учащиеся не будут непосредственно видеть вещества и происходящие процессы. Следовательно, не приобретут о них конкретных представлений. Иногда оказывается целесообразным комбинированный прием с привлечением непосредственных и опосредованных демонстраций, когда показывают хорошо видимые операции в стеклянной посуде, а отдельные, плохо видимые детали проецируют на экран. Или при опосредованной демонстрации на демонстрационный стол (или столы учащихся) выставляют взятые и полученные вещества, а процессы между ними проецируют на экран .

Дидактический эффект демонстрационных опытов зависит от таких факторов, как техника проведения опыта и создание оптимальных условий наглядности того, что хочет показать и доказать учитель, т.е. достижения цели эксперимента.

Требования к демонстрационному эксперименту:

безопасность эксперимента;

соблюдение условия определенного расстояния от объектов наблюдения до наблюдателя, условий освещения, объемов веществ, размеров и формы посуды, приборов;

сочетание демонстрации опыта с комментарием учителя.

Последнее требование играет главную роль в демонстрации, когда учитель посредством комментария руководит наблюдением за ходом эксперимента. Проведение эксперимента учителем может быть осуществлено как чисто иллюстративным методом, так и частично-исследовательским .

Таким образом, в процессе демонстрирования осуществляется три функции учебного процесса: образовательная, воспитательная и развивающая. Демонстрационный опыт позволяет формировать у учащихся основные теоретические понятия химии, обеспечивает наглядное восприятие химических явлений и конкретных веществ, развивает логическое мышление, раскрывает практическое значение химии. С его помощью перед учащимися ставят познавательные проблемы, выдвигают гипотезы, проверяемые экспериментально. Он способствует закреплению и дальнейшему применению изучаемого материала.

Ученический эксперимент - это вид самостоятельной работы. Он не только обогащает учащихся новыми знаниями, понятиями, умениями, но и доказывает истинность приобретенных ими знаний, что обеспечивает более глубокое понимание и усвоение материала. Он позволяет более полно осуществлять принцип политехнизма - связь с жизнью, с практической деятельностью .

Ученический эксперимент подразделяют на два вида: 1) лабораторные опыты, проводимые учащимися в процессе приобретения новых знаний; 2) практические работы, которые учащиеся проделывают после прохождения одной - двух тем .

Лабораторные опыты имеют обучающий и развивающий характер и их роль в изучении химии наиболее важна .

Цель лабораторных опытов - приобретение новых знаний, изучение нового материала. В них первоначально отрабатываются способы действий, при этом учащиеся работают обычно парами.

Практические занятия, как правило, проводят в конце изучения темы с целью закрепления, конкретизации знаний, формирования практических умений и совершенствования уже имеющихся умений учащихся. На практических занятиях они проводят опыты самостоятельно, пользуясь инструкцией, чаще индивидуально .

Проведение практических работ позволяет учащимся применить полученные знания и умения в самостоятельной работе, сделать выводы и обобщения, а учителю - оценить уровень сформировавшихся знаний и умений учащихся. Практическая работа является своеобразным итогом, завершающим этапом при изучении тем и разделов .

К практическим работам учащиеся обязательно готовятся и самостоятельно продумывают эксперимент. Во многих случаях практические работы проводятся в виде экспериментального решения задач, в старших классах - в виде практикума, когда после прохождения ряда тем практические работы проводятся на нескольких уроках. Умело использованный химический эксперимент имеет большое значение не только для достижения поставленных образовательных и воспитательных задач в преподавании химии, но и для развития познавательных интересов учащихся. Если учитель свободно владеет химическим экспериментом и применяет его для приобретения учащимися знаний и умений, то учащиеся с интересом изучают химию. При отсутствии химического эксперимента на уроках химии знания учащихся по химии могут приобрести формальный оттенок - резко падает интерес к предмету .

Ученический эксперимент с точки зрения процесса учения должен проходить по следующим этапам: 1) осознание цели проведения опыта; 2) изучение предложенных веществ; 3) сборка или использование готового прибора; 4) выполнение опыта; 5) анализ результатов и выводы; 6) объяснение полученных результатов и использование химических уравнений; 7) составление отчета.

Каждый учащийся должен понимать, для чего он проделывает опыт и как надо решить поставленную перед ним задачу. Он изучает вещества органолептически или с помощью приборов и индикаторов, рассматривает детали прибора или весь прибор. Выполняя опыт, учащийся овладевает приемами и манипуляциями, наблюдает и замечает особенности хода процесса, отличает важные изменения от несущественных. Проделав опыт, он должен составить отчет.

На практических занятиях большое внимание обращается на выработку практических умений, так как их основы закладываются с самых первых этапов изучения химии, а в последующих классах они получают развитие и совершенствуются.

Практические занятия бывают двух видов: проводимые по инструкции и экспериментальные задачи.

Инструкция - это ориентировочная основа деятельности учащихся. В ней подробно изложен каждый этап выполнения опытов, даются указания, как избежать ошибочных действий, и содержится информация о мерах безопасности при выполнении работы. Инструкции к лабораторным опытам и практическим заданиям должны быть четкими, последовательными. Однако при выполнении работы одной письменной инструкции недостаточно, учителю необходимо грамотно и четко показывать лабораторные приемы и манипуляции в процессе предварительной подготовки учащихся к практической работе.

Экспериментальные задачи не содержат инструкций, а включают только условия. Разрабатывать план решения и осуществлять его учащиеся должны самостоятельно.

Подготовка к практическим занятиям носит обобщающий характер. При этом используется материал, изученный в разных разделах темы, и также формируются практические умения. На предыдущих уроках учитель использовал приборы, которыми учащиеся будут пользоваться на практическом занятии, рассматривались условия и особенности проведения опыта и т. д.

В начале практического занятия необходимо провести краткую беседу о правилах безопасности и об узловых моментах работы. На демонстрационном столе размещают в собранном виде все используемые в работе приборы.

Практическое занятие, посвященное решению экспериментальных задач, - разновидность контрольной работы, поэтому его проводят несколько иначе, чем практическое занятие по инструкции.

Подготовку учащихся к решению экспериментальных задач можно проводить поэтапно.

1. Сначала весь класс решает задачу теоретически. Для этого необходимо проанализировать условие задачи, сформулировать вопросы, на которые нужно дать ответы для получения окончательного результата, предложить опыты, необходимые для ответа на каждый вопрос.

2. Один из учащихся решает задачу теоретически у доски.

3. Учащийся у доски выполняет эксперимент. После этого класс приступает к решению аналогичных задач на рабочих местах.

Экспериментальные задачи целесообразно распределять по вариантам, чтобы добиться большей самостоятельности и активности учащихся в процессе работы.

При экспериментальном решении химических задач предусматривается самостоятельное применение умений учащихся проводить химические опыты для приобретения знаний или подтверждения предположений. Так обеспечивается развитие их познавательной деятельности в процессе выполнения химического эксперимента .