В чем заключена наследственная информация организации. Информация генетическая (наследственная)

(см. Информация, Генетика) - программа свойств организма, заложенная в наследуемых структурах (ДНК, отчасти в РНК) и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к тем или иным заболеваниям и генетическим порокам организма.

  • - информация о свойствах организма, к-рая передаётся по наследству. Г. и. записана последовательностью нуклеотидов молекул нуклеиновых к-т...

    Биологический энциклопедический словарь

  • - см. наследственная информация...

    Словарь ботанических терминов

  • - Наследственные потенции, записанные в последовательностях нуклеотидов ДНК...

    Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • - программа свойств организма, заложенная в наследуемых структурах и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен веществ,...

    Начала современного Естествознания

  • - получаемые от предков и заложенные в наследств. структурах организмов в виде совокупности генов программы о составе, строении и характере обмена составляющих организм в-в....

    Естествознание. Энциклопедический словарь

  • - см. Тернера-Кизера синдром...

    Большой медицинский словарь

  • - см. Афибриногенемия...

    Большой медицинский словарь

  • - Б. на руках, наследуемая по аутосомно-доминантному...

    Большой медицинский словарь

  • - информация о строении и функциях организма, заложенная в совокупности генов...

    Большой медицинский словарь

  • - см. Изменчивость генотипическая...

    Большой медицинский словарь

  • - общее название наследственных болезней, обусловленных нарушением равновесия между процессами окисления гемоглобина и метгемоглобина и процессами восстановления гемоглобина, проявляющихся на первом году жизни...

    Большой медицинский словарь

  • - см. Генетическая информация...

    Большой медицинский словарь

  • - заключенная в ДНК способность вызывать специфические биохимические реакции, а также развитие видоспецифических признаков...

    Экологический словарь

  • - генетическая информация о наследственных структурах организма, получаемая от предков в виде совокупности генов...

    Экологический словарь

  • - заложенная в наследственных структурах организмов, получаемая от предков в виде совокупности Генов информация о составе, строении и характере обмена составляющих организм веществ и нуклеиновых кислот) и...

    Большая Советская энциклопедия

  • - получаемые от предков и заложенные в наследственных структурах организмов в виде совокупности генов программы о составе, строении и характере обмена составляющих организм веществ...

    Большой энциклопедический словарь

"Информация генетическая (наследственная)" в книгах

автора Панов Евгений Николаевич

автора

автора Курчанов Николай Анатольевич

автора

Наследственная информация - почтовым переводом

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Наследственная информация - почтовым переводом Коль скоро у многоклеточных животных спермин унаследовали от одноклеточных известную долю индивидуальности и суверенности, а именно способность активно передвигаться и разыскивать яйцеклетку, они могут в принципе

Глава 1. Генетическая информация

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Глава 1. Генетическая информация Ключевой проблемой биологии, по-видимому, можно считать вопрос о том, как увековечивает свой опыт живая материя. М. Дельбрюк (1906–1981), американский генетик, лауреат Нобелевской премии 1969 г. При изучении любого биологического феномена

Глава 3. Генетическая информация

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Глава 3. Генетическая информация Носителями наследственной информации в природе являются нуклеиновые кислоты. Именно они выполняют три необходимые для жизни функции: хранение, воспроизведение и реализацию этой информации. В ходе эволюции ключевая роль по хранению и

30. Изменчивость: наследственная и ненаследственная

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

30. Изменчивость: наследственная и ненаследственная Вспомните!Какие виды изменчивости вам известны?Приведите примеры признаков, изменяющихся под воздействием внешней среды.Что такое мутации?Изменчивость – одно из важнейших свойств живого, способность живых

Наследственная (или семейная традиция)

Из книги Развитие сверхспособностей. Вы можете больше, чем думаете! автора Пензак Кристофер

Наследственная (или семейная традиция) Наследственные ведьмы утверждают, что их традиция корнями уходит ко времени до вмешательства гарднерианского ведовства. Учение передавалось в изустной форме от одного члена семьи другому, и таким образом все посвященные

Наследственная знать

Из книги автора

Наследственная знать Отношения чжухоу с наследственной знатью, т. е. с владетельными аристократами, объединенными в могущественные кланы, складывались по классическому принципу феодализма «вассал моего вассала- не мой вассал». Этот принцип возник и тем более

Наследственная предрасположенность

Из книги Домашняя медицинская энциклопедия. Симптомы и лечение самых распространенных заболеваний автора Коллектив авторов

Наследственная предрасположенность При исследовании большой группы детей и подростков было установлено, что гастритом, как правило, заболевали те дети, родители которых страдали хроническими заболеваниями желудочно-кишечного тракта. Ученые предполагают, что

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

2.6. Биосинтез белка и нуклеиновых кислот. Матричный характер реакций биосинтеза. Генетическая информация в клетке. Гены, генетический код и его свойства Термины и понятия, проверяемые в экзаменационной работе: антикодон, биосинтез, ген, генетическая информация,

Генетическая информация

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

§ 3 Наследственная трансмиссия

Из книги Наследственное право России: учебник автора Гуреев Владимир Александрович

§ 3 Наследственная трансмиссия Наследственная трансмиссия в самом общем виде представляет собой переход права на принятие наследства (ст. 1156 ГК?РФ).Полагаем правильным восстановление в самом названии статьи 1156 ГК?РФ традиционного для наследственного права понятия

«Наследственная» мигрень

Из книги Добрая сила [Самогипноз] автора Лекрон Лесли М.

«Наследственная» мигрень О том, что хронические головные боли передаются в семье от поколения к поколению, известно давно; а вот какую роль в этом играет наследственность, сказать трудно. Не исключено, что она всего лишь обеспечивает «конституциональную»

Уральский институт экономики, управления и права

Курганский филиал

Реферат

по предмету: Концепция современного естествознания

на тему: Генетическая информация

Работу выполнила:

Студентка 1 курса

Заочного отделения

Работу проверила:

Курган 2010

Введение……………………………………………………….…3

1 Молекула ДНК…………………………………………………………...4

2 Генетический код………………………………………………….…….8

3 Программа «Геном человека»……………………………………….….9

4 Генетическая инженерия……………………………………………….10

5 Клонирование животных……………………………………………….13

Заключение………………………………………………………16

Список литературы………………………………………..…….17

ВВЕДЕНИЕ.

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.
Генетическая информация определяет морфологическое строение,
рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных.
Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

1. МОЛЕКУЛА ДНК.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) "прикреплены" нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Цепи ДНК - комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

Схематический вид молекулы ДНК

Итак, напомним, что в основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК. Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой.

Удвоение молекулы ДНК.

В живой клетке удвоение происходит потому, что две спиральные цепи расходятся, а потом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК.

Репликация ДНК.

В результате создаются две двойные спирали ДНК (дочерние молекулы), каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.
Теперь обсудим, как происходит передача информации в клетке. Напомним, что участок молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК - белок); и по каналу обратной связи (среда - белок - ДНК).
Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК (иРНК), которая может проникать через порог ядерной мембраны. Что же такое
иРНК ?
иРНК это: .
а) одноцепочечная молекула, комплементарная одной нити ДНК; .
б) копия ДНК; .
в) копия не всей молекулы ДНК, а лишь ее части (по длине). Эта часть соответствует одному или группе рядом лежащих генов;
г) молекула, образованная под действием специального фермента - РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК?

В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.
Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа "репликационной машины". Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок.
При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНК-полимеразы дважды проверяют соответствие нуклеотидов исходной матрице. .
Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации,

б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

2. ГЕНЕТИЧЕСКИЙ КОД.

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка. .
Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У) задает любую из 20 аминокислот.
Свойства генетического кода: .
а) Код триплетен.
Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.
б) Код вырожден.
Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту). .
в) Код однозначен.
Каждый кодон соответствует только одной аминокислоте.

г) Генетический код универсален , т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование "слов из трех букв" - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода - с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором - лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.


3. ПРОГРАММА «ГЕНОМ ЧЕЛОВЕКА»

Международная программа "Геном человека" посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека - около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна. В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х10 13 клеток, составляет 10 11 км, что в тысячу раз превышает расстояние от Солнца до Земли. .
К настоящему времени практически полностью расшифрована полная последовательность ДНК человека. .
Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей. Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека. Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%.

4. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ.

"Генетическая или генная инженерия" - создание новых генетических структур и создание организмов с новыми наследственными свойствами. С помощью биохимических и генетических методик происходит изменение хромосомного материала - основного наследственного вещества клеток. Биоинженеры изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть. .
Генная инженерия принципиально отличается от классической селекции по следующим пунктам: .
1) Можно (нельзя) скрещивать неродственные виды; .
2) Можно (нельзя) извне управлять процессом рекомбинации в организме (постоянство своего генетического состава организм очень надежно охраняет);
3) Можно (нельзя) предугадать, какое получится потомство.
Ученым было необходимо разработать методику введения гена в клетку. Причём нужно было научиться не просто вводить ген в цитоплазму, а встраивать его в собственную молекулу ДНК клетки, так, чтобы новая информация могла быть "прочитана" биосинтетическим аппаратом клетки, вырабатывающим белки, а также воспроизводящим гены при делении клетки. Новый ген (или его фрагмент) должен очень точно располагаться в ДНК с соблюдением ряда условий, для того чтобы клетка действительно начала синтезировать новые ферменты. Надо было также обойти сопротивляемость клетки-хозяина: как правило, все изменения генетического аппарата воспринимаются клеткой как "ошибки информации" и исправляются специальными механизмами. .
(Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать "свой" белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку.)
Важное открытие - обнаружение в бактериальных клетках, помимо главной ее хромосомы, внехромосомных кольцевых молекул ДНК - плазмид. Плазмиды можно извлечь из одной клетки и перенести в другую. Плазмиды можно разрезать, фрагменты сращивать друг с другом, а затем такие комбинированные плазмиды вводить в клетки. Поскольку плазмидная ДНК представляет собой замкнутую кольцевую молекулу, кольцо нужно сперва разорвать таким образом, чтобы свободные концы были в химическом отношении реакционноспособными, пригодными для последующего соединения. Достичь этого удается либо простым механическим путем (например, сильным встряхиванием), либо с помощью различных ферментов, называемых нуклеазами (рестриктазами) . Затем фрагменты ДНК соединяют с помощью лигаз - ферментов , исправляющих повреждения в ДНК и сшивающих (склеивающих) концы ее разорванных нитей.
Рестриктазы-ферменты - способны расщеплять ДНК в строго определенном месте с образованием "липких" концов у образуемых фрагментов. Иными словами, с помощью рестриктаз ген можно разрезать на кусочки - нуклеотиды, а затем с помощью лигаз такие кусочки можно "склеивать", соединять в иной комбинации, конструируя новый ген.

Осуществление введение генных конструкций в бактериальную клетку.
Сначала плазмиды режут рестриктазами и получают односпиральные концы, комплементарные концам генов, проводят гибридизацию гена и плазмиды в пробирке, а затем рекомбинантную плазмиду вводят в клетку.
Плазмиды содержат маркерный ген, например ген, сообщающий клетке устойчивость к определенному антибиотику. .
В рекомбинантных клетках плазмида участвует в процессах репликации, транскрипции и трансляции нового введенного в клетку гена.
Синтезируется продукт этого гена, который в природных клетках никогда ранее не мог образоваться.

Подчеркнем, что in vitro проводится только рекомбинация, а все остальные превращения с плазмидой происходят в клетке так же, как и со своими собственными генами. .
Итак, основные процедуры в генной инженерии сводятся к следующему:
1) рекомбинация плазмиды и ДНК-гена; .
2) введение рекомбинантной плазмиды в клетку; .
3) молекулярное клонирование (технология клонирования наименьших биологических объектов - молекул ДНК, их частей и даже отдельных генов)

Достижения генной инженерии.

Технологии генной инженерии разрабатываются не очень много времени, они имеют крупные достижения и в медицине, и в сельском хозяйстве. Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. .
В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены трансгенные растения , например сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

Перспективы генной инженерии. .
На основе детального анализа возможностей и реальных достижений генной инженерии составлены научные прогнозы на начало ХХI века. Высказаны, например, надежды, что в ближайшие годы будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010 году будут установлены механизмы возникновения почти всех видов рака. К 2013 году завершится разработка препаратов, предотвращающих рак. .
Не менее важна сегодня генная диагностика. Обычно молекулярная диагностика проводится по белкам, и, как правило, с помощью других белков-антител. Недостатки такой диагностики - обнаружение болезни на поздней стадии. Но теперь можно диагностировать и по генам (ДНК), и по синтезированным на них РНК еще до того, как в организме начали синтезироваться и накапливаться чужеродные белки.
Не имея возможности детально останавливаться на генной терапии, кратко перечислим некоторые проблемы, которыми занимаются ученые:
доставка генов к клеткам-мишеням организма и нуклеиновых кислот внутрь клеток, блокировка или разрушение вредного гена либо блокировка продуцируемой им РНК с помощью антисмысловых ДНК или РНК,
введение нового активного гена или регулятора активности гена. Лечение наследственных болезней целиком зависит от успехов в этом направлении,
введение генов или комплексов генов, блокирующих клеточное деление или вызывающих клеточную смерть, как средство кардинальной раковой терапии.
Отметим также важность биотехнологии для техники: например, создание биосенсоров на основе биологических макромолекул или конструирование биологически возобновляемых источников энергии.

5. КЛОНИРОВАНИЕ ЖИВОТНЫХ.

Клонирование в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Эти копии должны обладать идентичной наследственной информацией, т.е. нести идентичный набор генов. .
Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами. .
Наибольшее интерес представляет клонирование многоклеточных организмов, которое стало возможным благодаря успехам генной инженерии. Создавая особые условия и вмешиваясь в структуру ядра клетки специалисты заставляют развиваться её в нужную ткань или даже в целый заранее намеченный организм. Причём открыты не только методы воспроизведения того организма, из которого клетка была взята, но и другого организма - того, от которого был взят только генетический материал. Появилась принципиальная возможность воспроизведения даже умершего организма. И даже тогда, когда от него остались минимальные части - лишь бы из них можно было выделить генетический материал.

Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. .
В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли - первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы.

Однако, успех сопутствовал лишь в одном из 236 опытов.
В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова).

Дальнейшие эксперименты доказали, что в некоторых случаях ядра соматических (не зародышевых) клеток способны обеспечить нормальное развитие млекопитающих (что было показано на мышах).
Однако получение клона еще не означает получения точной копии клонированного животного. Например, в случае использования приемных матерей при клонировании млекопитающих невозможно обеспечить одинаковые условия, а значит трудно говорить об абсолютной точности клонирования исходной особи. На сегодняшний день ясно, что структурно-функциональные изменения ядер в ходе индивидуального развития животных достаточно глубоки: одни гены активно работают, другие "молчат". И чем организм более специализирован, чем выше ступенька эволюционной лестницы, на которой он стоит, тем эти изменения глубже и труднее обратимы. .
Недавно было показано, что в соматических клетках в ходе их развития хромосомы последовательно укорачиваются на своих концах, а в зародышевых клетках специальный белок - теломераза достраивает, восстанавливает их. .
Поэтому естественен вопрос, способны ли ядра соматических клеток полностью и эквивалентно заменить ядра зародышевых клеток в их функции обеспечения нормального развития зародыша. .
Различают полное и частичное клонирование организмов. При полном воссоздаётся весь организм целиком, при частичном - организм воссоздаётся - соответственно - не полностью. Например, лишь те или иные его ткани. Одно из перспективных применений клонирования тканей - клеточная терапия в медицине. Такие клетки могли бы компенсировать недостаток и дефекты собственных тканей организма и не отторгаться при трансплантации. Это так называемое репродуктивное и терапевтическое клонирование.

ЗАКЛЮЧЕНИЕ.

Носителем генетической информации является ДНК – органическая структура в виде двойной спирали. Информация записана с помощью последовательности нуклеотидов. В генетическом коде используется всего лишь 4 «буквы»-нуклеотида; код един для всех живых организмов.

Генетическая информация реализуется при экспрессии генов в процессах транскрипции и трансляции. Передача генетической информации следующему поколению происходит в результате репликации (самокопирования ДНК).

СПИСОК ЛИТЕРАТУРЫ:

1. В. Н. Сойфер, Э.Р. Пилле, О. Г. Газенко, Л.В. Крушинский, С. Я. Залкинд и др. "История биологии с начала XX века до наших дней" М. 1975;
2. Бекиш О.-Я.Л. Медицинская биология. - Мн.: Ураджай, 2000. - с.114-119;

3. Мутовин Г.Р. Основы клинической генетики. - М.: Высшая школа, 1997. - с. 83-84;

4. Заяц Р.С. Основы медицинской генетики. - Мн.: Высшая школа, 1998. - с. 60-65;

5. Пехов А.П. Биология с основами экологии, 2000, 672 с;
6. Розанов С.И. Общая экология, 2003, 288 с;
7. Куклев Ю.И. Физическая экология, 2001, 359 с;
8. Николайкин Н.И. Экология Изд.2, 2003, 624 с.

  • 26.56 МБ
  • добавлен 12.12.2010

Минск: 1992. Цитологические и молекулярные основы изменчивости. Генетическая роль ДНК. Основы размножения. Закономерности наследования признаков. Генетика пола. Генетические основы индивидуального развития. Изменчивость. Структура генов и генома прокариот и эукариот. Генетическая структура популяций. Генетика человека. Генетичес...

Что же позволяет биологическим системам воспроизводить подобные системы? Очевидно – наличие некоторой информации .

Информация – это идеальное (нематериальное) понятие, то есть информация не обладает ни массой, ни энергией. Однако всегда существуют материальные носители информации: речь (звуки), бумага, CD-диски...

Существует множество подходов к определению понятия «информация». Мы будем рассматривать информацию как некоторую программу , при выполнении которой можно получить определенный результат.

В биологии информация, которая сохраняется при смене множества поколений (то есть наследуется), называется генетической информацией (от греч. genesis , geneticos – происхождение; от лат. genus – род).

Однако не любая наследственная информация является генетической.

Негенетическая (парагенетическая, эпигенетическая) информация – это информация, благодаря которой подобное воспроизводит подобное, но, как правило, это подобие детерминировано факторами внешней среды или эффектом материнского организма. Механизмы передачи негенетической информации из поколения в поколение исключительно разнообразны, и мы их пока рассматривать не будем.

Генетическая информация – это такая наследственная информация, носителем которой является ДНК (у части вирусов – РНК).

ДНК – это химическое вещество, которое входит в состав хромосом – окрашенных структур, которые возникают на месте ядра при делении клетки.

Минимальный набор хромосом и одновременно минимальный объем ДНК определенного биологического вида называется гено мом (имен. падеж, ед. число – гено м ).

Участок ДНК, который несет информацию о некотором элементарном признаке – фене (имен. падеж, ед. число – фен ), называется ге ном (имен. падеж, ед. число – ген ). Многие гены могут существовать в виде двух и более вариантов – аллелей. Например, у мышей ген А , определяющий общую окраску тела, представлен аллелями:

AY – желтая окраска,

AL – окраска агути («серые») со светлым брюхом,

A – агути, «серые», норма,

at – черная с подпалинами,

a – черная, нон-агути.

Совокупность всех генов (точнее, аллелей) определенного организма называется геноти пом (имен. падеж, ед. число – геноти п ).

Генетическая информация обладает рядом важных свойств:

дискретность (существование элементарных единиц информации – генов , входящих в состав хромосом );

устойчивость (сохранение);

самовоспроизведение (репликация ДНК , копирование);

реализация (выполнение программы с получением некоторого результата);

передача из поколения в поколение;

комбинирование дискретных единиц информации (генов, хромосом);

изменение (мутирование ) – появление новых генов и хромосом.

Основное свойство генетической информации – это отсутствие прямого влияния результатов её реализации на исходную информацию . В системах, созданных человеком (в технике, экономике…) информация изменяется осознанно, на основе обратной связи между исходной информацией и результатами её реализации. Генетическая информация изменяется случайным образом : за счет мутаций и рекомбинаций. Прямого влияния результатов реализации информации на исходную информацию не существует. Сохранение и передача измененной информации осуществляется путем отбора (естественного или искусственного) по результатам её реализации.

Введение

1.Понятие о наследственности

3.Механизм наследственности

Заключение

Список литературы

Введение

В органическом мире наблюдается удивительное сходство между родителями и детьми, между братьями и сестрами, а также другими родственниками. Это сходство обуславливается наследственностью, то есть способностью живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.

1.Понятие о наследственности

Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловленно передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью - возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность) или навыков обучения, образования, традиций (т. н. социальная, или сигнальная наследственность).Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно.

Таким образом, наследственность - это важнейшая особенность живых организмов, заключающаяся в способности передавать свои свойства и функции от родителей к потомкам.

2.Определение гена. Основная функция гена

Ген - это единица хранения, передачи и реализации наследственной информации. Ген представляет собой специфический участок молекулы ДНК, в структуре которого закодирована структура определенного полипептида (белка). Это, казалось бы, достаточно простое положение известно многим со школы. Сейчас ясно, что многие участки ДНК не кодируют белки, а, вероятно, выполняют регулирующие функции. Во всяком случае, в структуре генома человека только около 2% ДНК представляют последовательности, на основе которых идет синтез информационной РНК (процесс транскрипции), которая затем определяет последовательность аминокислот при синтезе белков (процесс трансляции). В настоящее время полагают, что в геноме человека имеется около 30 тыс. генов.

Основной функцией гена является кодирование информации для синтеза специфического белка.

Свойства генов

1. дискретность - несмешиваемость генов;

2. стабильность - способность сохранять структуру;

3. лабильность - способность многократно мутировать;

4. множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

5. аллельность - в генотипе диплоидных организмов только две формы гена;

6. специфичность - каждый ген кодирует свой продукт;

7. плейотропия - множественный эффект гена;

8. экспрессивность - степень выраженности гена в признаке;

9. пенетрантность - частота проявления гена в фенотипе;

10. амплификация - увеличение количества копий гена.

Классификация генов

1. Структурные гены - уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК.

2. Функциональные гены - регулируют работу структурных генов.

3.Механизм наследственности

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированные (соматические) клетки тела при бесполом несут в себе не сами признаки и свойства будущих организмов, а только задатки их развития. Эти задатки и являются генами. Ген - это участок молекулы ДНК (или участок хромосомы), определяющий возможность развития отдельного элементарного признака. Молекула ДНК состоит из двух полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4 типов - нуклеотидов, специфичность которых определяется одним из 4 азотистых оснований. Сочетание трех рядом стоящих нуклеотидов в цепи ДНК составляют генетический код. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Ген представляет собой группу рядом лежащих нуклеотидов, которыми закодирован один белок, определяющий один признак. Число генов очень велико: у человека их десятки тысяч. Один и тот же ген может оказывать влияние на развитие ряда признаков, так же, как и на формирование одного признака могут оказывать влияние несколько генов.

Каждому виду растений и животных свойствен свой количественный набор хромосом. У всех организмов одного и того же вида каждый ген расположен в одном и том же месте строго определенной хромосомы. Каждая клетка человеческого тела содержит 46 хромосом. Почти все хромосомы в наборе представлены парами, в каждую из 22-х пар входят одинаковые по величине идентичные хромосомы, а 23-я пара является половыми хромосомами: у женщин она состоит из одинаковых хромосом XX, а у мужчин - XY. В галоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие одного какого-то признака.

Генетическая информация закодирована в последовательности азотистых оснований, содержащихся в молекуле ДНК. Азотистые основания можно рассматривать в качестве “букв” генетического алфавита. Последовательность оснований образует “слова”. Гены - это своего рода “предложения”, записанные на генетическом языке. Соответственно генетическое содержимое организма представляет собой как бы “книгу”, составленную из генетических предложений. В отличие от строго определенного расположения азотистых оснований в двух комплементарных частях, нет никаких ограничений относительно того, в каком порядке должны следовать основания друг за другом вдоль одной цепи. Благодаря этому существует практически неограниченное число различных молекул ДНК. Число возможных генетических сообщений, кодируемых достаточно длинными цепями ДНК, практически не ограничено. За воспроизведение в поколениях растений, животных и человека наследственных свойств ответственны 3 эволюционно закрепленных универсальных процесса.


После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.