Формулы b и. Формулы сокращённого умножения

При расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения . Всего таких формул семь. Их все необходимо знать наизусть.

Следует также помнить, что вместо a и b в формулах могут стоять как числа, так и любые другие алгебраические многочлены.

Разность квадратов

Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.

a 2 - b 2 = (a - b)(a + b)

Квадрат суммы

Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.

(a + b) 2 = a 2 + 2ab + b 2

Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел , не используя калькулятор или умножение в столбик. Поясним на примере:

Найти 112 2 .

Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.2
112 = 100 + 1

Запишем сумму чисел в скобки и поставим над скобками квадрат.
112 2 = (100 + 12) 2

Воспользуемся формулой квадрата суммы:
112 2 = (100 + 12) 2 = 100 2 + 2 x 100 x 12 + 12 2 = 10 000 + 2 400 + 144 = 12 544

Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.

(8a + с) 2 = 64a 2 + 16ac + c 2

Предостережение!!!

(a + b) 2 не равно a 2 + b 2

Квадрат разности

Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.

(a - b) 2 = a 2 - 2ab + b 2

Также стоит запомнить весьма полезное преобразование:

(a - b) 2 = (b - a) 2
Формула выше доказывается простым раскрытием скобок:

(a - b) 2 = a 2 - 2ab + b 2 = b 2 - 2ab + a 2 = (b - a) 2

Куб суммы

Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.

(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Запомнить эту «страшную» на вид формулу довольно просто.

Выучите, что в начале идёт a 3 .

Два многочлена посередине имеют коэффициенты 3.

В спомним, что любое число в нулевой степени есть 1. (a 0 = 1, b 0 = 1). Легко заметить, что в формуле идёт понижение степени a и увеличение степени b. В этом можно убедиться:
(a + b) 3 = a 3 b 0 + 3a 2 b 1 + 3a 1 b 2 + b 3 a 0 = a 3 + 3a 2 b + 3ab 2 + b 3

Предостережение!!!

(a + b) 3 не равно a 3 + b 3

Куб разности

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.

(a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 3

Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и «-». Перед первым членом a 3 стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «-», затем опять «+» и т.д.

(a - b) 3 = + a 3 - 3a 2 b + 3ab 2 - b 3 = a 3 - 3a 2 b + 3ab 2 - b 3

Сумма кубов ( Не путать с кубом суммы!)

Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.

a 3 + b 3 = (a + b)(a 2 - ab + b 2)

Сумма кубов - это произведение двух скобок.

Первая скобка - сумма двух чисел.

Вторая скобка - неполный квадрат разности чисел. Неполным квадратом разности называют выражение:

A 2 - ab + b 2
Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.

Разность кубов (Не путать с кубом разности!!!)

Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.

a 3 - b 3 = (a - b)(a 2 + ab + b 2)

Будьте внимательны при записи знаков. Следует помнить, что все формулы, приведённые выше, используется также и справа налево.

Легкий способ запомнить формулы сокращенного умножения, или… Треугольник Паскаля.

Трудно запоминаются формулы сокращенного умножения? Делу легко помочь. Нужно просто запомнить, как изображается такая простая вещь, как треугольник Паскаля. Тогда вы вспомните эти формулы всегда и везде, вернее, не вспомните, а восстановите.

Что же такое треугольник Паскаля? Этот треугольник состоит из коэффициентов, которые входят в разложение любой степени двучлена вида в многочлен.

Разложим, например, :

В этой записи легко запоминается, что вначале стоит куб первого, а в конце - куб второго числа. А вот что посередине - запоминается сложно. И даже то, что в каждом следующем слагаемом степень одного множителя все время уменьшается, а второго - увеличивается - несложно заметить и запомнить, труднее дело обстоит с запоминанием коэффициентов и знаков (плюс там или минус?).

Итак, сначала коэффициенты. Не надо их запоминать! На полях тетрадки быстренько рисуем треугольник Паскаля, и вот они - коэффициенты, уже перед нами. Рисовать начинаем с трех единичек, одна сверху, две ниже, правее и левее - ага, уже треугольник получается:

Первая строка, с одной единичкой - нулевая. Потом идет первая, вторая, третья и так далее. Чтобы получить вторую строку, нужно по краям снова приписать единички, а в центре записать число, полученное сложением двух чисел, стоящих над ним:

Записываем третью строку: опять по краям единицы, и опять, чтобы получить следующее число в новой строке, сложим числа, стоящие над ним в предыдущей:


Как вы уже догадались, мы получаем в каждой строке коэффициенты из разложения двучлена в многочлен:


Ну а знаки запомнить еще проще: первый - такой же, как в раскладываемом двучлене (раскладываем сумму - значит, плюс, разность - значит, минус), а дальше знаки чередуются!

Вот такая это полезная штука - треугольник Паскаля. Пользуйтесь!

Умножение многочлена на многочлен

! Чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить.

Будьте внимательны! У каждого слагаемого есть свой знак.

Формулы сокращённого умножения многочленов - это, как правило, 7 (семь) часто встречающихся случаев умножения многочленов.

Определения и Формулы сокращенного умножения. Таблица

Три формулы сокращенного умножения для квадратов

1. Формула квадрата суммы.

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Чтобы лучше понять формулу, сначала упростим выражение (развернем формулу квадрата суммы)

А теперь разложим на множители (свернем формулу)

Последовательность действий при разложении на множители:

  1. определи, какие одночлены возводились в квадрат (5 и 3m );
  2. проверь, стоит ли в середине формулы их удвоенное произведение (2 5 3m = 30m );
  3. запиши ответ (5 + 3m) 2 .

2. Формула квадрата разности

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Сначала упростим выражение (развернем формулу):

А потом наоборот, разложим на множители (свернем формулу):

3. Формула разности квадратов

Произведение суммы двух выражений на их разность равно разности квадратов этих выражений.

Свернем формулу (выполним умножение)

А теперь развернем формулу (разложим на множители)

Четыре формулы сокращенного умножения для кубов

4. Формула куба суммы двух чисел

Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Последовательность действий при «сворачивании» формулы:

  1. найти одночлены, которые возводились в куб (здесь и 1 );
  2. проверить средние слагаемые на соответствие формуле;
  3. записать ответ.

5. Формула куба разности двух чисел

Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

6. Формула суммы кубов

Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

И обратно:

7. Формула разности кубов

Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

Применение формул сокращенного умножения. Таблица

Пример использования формул на практике (устный счет).

Задача: Найти площадь квадрата со стороной а = 71 см.

Решение: S = a 2 . Используя формулу квадрата суммы, имеем

71 2 = (70 + 1) 2 = 70 2 + 2*70*1 + 1 2 = 4900 + 140 + 1 = 5041 см 2

Ответ: 5041 см 2

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

a⁴ — b⁴ = (a - b)(a + b)(a² + b²).

Все равенства имеют пару (сумма - разность), кроме разности квадратов. Для суммы квадратов формула не приводится .

Остальные равенства легко запоминаются :

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b : это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение :

(a - b)³ = (a - b)(a - b)(a - b) = (a² — ab - ab + b²)(a - b) = a³ — a²b - a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени :

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

(x + 1)³ = 0.

Корень такого уравнения вычисляется устно: x = -1 .

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0 .

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x . После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора :

703² — 203² = (703 + 203)(703 - 203) = 906 ∙ 500 = 453000 .

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m - 1) - 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m - 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m .

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) - (10m² + 6m) .

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 - 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4) :

k³(k² + 4k + 4) = k (k² + 4k + 4) .

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) - k (k² + 4k + 4) = 0 .

Снова необходимо вынести общий множитель:

(k³ — k)(k² + 4k + 4) = 0.

Из первого полученного сомножителя можно вынести k . По формуле краткого умножения второй множитель будет тождественно равен (k + 2)² :

k (k² — 1)(k + 2)² = 0.

Использование формулы разности квадратов:

k (k - 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

  1. k = 0;
  2. k - 1 = 0; k = 1;
  3. k + 1 = 0; k = -1;
  4. (k + 2)² = 0; k = -2.

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

Применяют для упрощения вычислений, а также разложение многочленов на множители, быстрого умножения многочленов. Большинство формул сокращенного умножения можно получить из бинома Ньютона - в этом Вы скоро убедитесь.

Формулы для квадратов применяют в вычислениях чаще. Их начинают изучать в школьной программе начиная с 7 класса и до конца обучения формулы для квадратов и кубов школьники должны знать на зубок.

Формулы для кубов не сильно сложные и их нужно знать при сведении многочленов к стандартному виду, для упрощения подъема суммы или разности переменной и числа к кубу.

Формулы обозначены красным получают из предыдущих группировкой подобных слагаемых.

Формулы для четвертого и пятого степени в школьном курсе мало кому пригодятся, однако есть задачи при изучении высшей математики где нужно вычислять коэффициенты при степенях.


Формулы для степени n расписаны через биномиальные коэффициенты с использованием факториалов следующие

Примеры применения формул сокращенного умножения

Пример 1. Вычислить 51^2.

Решение. Если есть калькулятор то без проблем находите

Это я пошутил - с калькулятором мудрые все, без него... (не будем о грустном).

Не имея калькулятора и зная приведенные выше правила квадрат числа находим по правилу

Пример 2. Найти 99^2.

Решение. Применим вторую формулу

Пример 3. Возвести в квадрат выражение
(x+y-3).

Решение. Сумму первых двух слагаемых мысленно считаем одним слагаемым и по второй формуле сокращенного умножения имеем

Пример 4. Найти разность квадратов
11^2-9^2.

Решение. Поскольку числа небольшие то можно просто подставить значения квадратов

Но цель у нас совсем другая - научиться использовать формулы сокращенного умножения для упрощения вычислений. Для этого примера применим третью формулу

Пример 5. Найти разность квадратов
17^2-3^2 .

Решение. На этом примере Вы уже захотите изучить правила чтобы вычисления свести к одной строке

Как видите - ничего удивительного мы не делали.

Пример 6. Упростить выражение
(x-y)^2-(x+y)^2.

Решение. Можно раскладывать квадраты, а позже сгруппировать подобные слагаемые. Однако можно прямо применить разность квадратов

Просто и без длинных решений.

Пример 7. Возвести в куб многочлен
x^3-4.

Решение . Применим 5 формулу сокращенного умножения

Пример 8. Записать в виде разности квадратов или их сумме
а) x^2-8x+7
б) x^2+4x+29

Решение. а) Перегруппируем слагаемые

б) Упрощаем на основе предыдущих рассуждений

Пример 9. Разложить рациональную дробь

Решение. Применим формулу разности квадратов

Составим систему уравнений для определения констант

К утроенному первому уравнению добавим второе. Найденное значение подставляем в первое уравнение

Окончательно разложение примет вид

Разложить рациональную дробь часто необходимо перед интегрированием, чтобы снизить степень знаменателя.

Пример 10. Используя бином Ньютона расписать
выражение (x-a)^7.

Решение. Что такое бином Ньютона Вы вероятно уже знаете. Если нет то ниже приведены биномиальные коэффициенты

Они образуются следующим образом: по краю идут единицы, коэффициенты между ними в нижней строке образуют суммированием соседних верхних. Если ищем разницу в каком-то степени, то знаки в расписании чередуются от плюса к минусу. Таким образом для седьмого порядка получим такой расклад

Внимательно также посмотрите как меняются показатели - для первой переменной они уменьшаются на единицу в каждом следующем слагаемом, соответственно для второй - на единицу растут. В сумме показатели всегда должны быть равны степени разложения (=7 ).

Думаю на основе приведенного выше материала Вы сможете решить задачи на бином Ньютона. Изучайте формулы сокращенного умножения и применяйте везде, где это может упростить вычисления и сэкономит время выполнения задания.

Выражение (a + b ) 2 - это квадрат суммы чисел a и b . По определению степени выражение (a + b a + b )(a + b ). Следовательно, из квадрата суммы мы можем сделать выводы, что

(a + b ) 2 = (a + b )(a + b ) = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 ,

т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

формула квадрата суммы

(a + b ) 2 = a 2 + 2ab + b 2

Многочлен a 2 + 2ab + b 2 называется разложением квадрата суммы.

Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.

Пример. Возвести в квадрат выражение 3x 2 + 2xy .

Решение: чтобы не производить дополнительных преобразований, воспользуемся формулой квадрата суммы. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

(3x 2 + 2xy ) 2 = (3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2

Теперь, пользуясь правилами умножения и возведения в степень одночленов , упростим получившееся выражение:

(3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2 = 9x 4 + 12x 3 y + 4x 2 y 2

Квадрат разности

Выражение (a - b ) 2 - это квадрат разности чисел a и b . Выражение (a - b ) 2 представляет собой произведение двух многочленов (a - b )(a - b ). Следовательно, из квадрата разности мы можем сделать выводы, что

(a - b ) 2 = (a - b )(a - b ) = a 2 - ab - ab + b 2 = a 2 - 2ab + b 2 ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Из правила следует, что общая формула квадрата разности , без промежуточных преобразований, будет выглядеть так:

(a - b ) 2 = a 2 - 2ab + b 2

Многочлен a 2 - 2ab + b 2 называется разложением квадрата разности.

Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.

Пример. Представьте квадрат разности в виде трёхчлена:

(2a 2 - 5ab 2) 2

Решение: используя формулу квадрата разности находим:

(2a 2 - 5ab 2) 2 = (2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2

Теперь преобразуем выражение в многочлен стандартного вида :

(2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2 = 4a 4 - 20a 3 b 2 + 25a 2 b 4

Разность квадратов

Выражение a 2 - b 2 - это разность квадратов чисел a и b . Выражение a 2 - b 2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:

(a + b )(a - b ) = a 2 + ab - ab - b 2 = a 2 - b 2 ,

т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.

Из правила следует, что общая формула разности квадратов выглядит так:

a 2 - b 2 = (a + b )(a - b )

Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно - как сумма двух чисел, а другое - как разность тех же чисел.

Пример. Преобразуйте произведение в двучлен:

(5a 2 + 3)(5a 2 - 3)

Решение:

(5a 2 + 3)(5a 2 - 3) = (5a 2) 2 - 3 2 = 25a 4 - 9

В примере мы применили формулу разности квадратов справа налево, то есть нам дана была правая часть формулы, а мы преобразовали её в левую:

(a + b )(a - b ) = a 2 - b 2

На практике все три рассмотренные формулы применяются и слева направо и справа налево, в зависимости от ситуации.